mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
00f32752f7
* Unifying all loadLocalTile from lhs and rhs to an extract_block function. * Adding get_tensor operation which was missing in TensorContractionMapper. * Adding the -D method missing from cmake for Disable_Skinny Contraction operation. * Wrapping all the indices in TensorScanSycl into Scan parameter struct. * Fixing typo in Device SYCL * Unifying load to private register for tall/skinny no shared * Unifying load to vector tile for tensor-vector/vector-tensor operation * Removing all the LHS/RHS class for extracting data from global * Removing Outputfunction from TensorContractionSkinnyNoshared. * Combining the local memory version of tall/skinny and normal tensor contraction into one kernel. * Combining the no-local memory version of tall/skinny and normal tensor contraction into one kernel. * Combining General Tensor-Vector and VectorTensor contraction into one kernel. * Making double buffering optional for Tensor contraction when local memory is version is used. * Modifying benchmark to accept custom Reduction Sizes * Disabling AVX optimization for SYCL backend on the host to allow SSE optimization to the host * Adding Test for SYCL * Modifying SYCL CMake
141 lines
6.1 KiB
C++
141 lines
6.1 KiB
C++
#ifdef EIGEN_USE_SYCL
|
|
|
|
#include <SYCL/sycl.hpp>
|
|
#include <iostream>
|
|
|
|
#include "tensor_benchmarks.h"
|
|
|
|
cl::sycl::gpu_selector selector;
|
|
Eigen::QueueInterface queue(selector);
|
|
#define BM_FuncWithInput2DimsGPU(FUNC, D1, D2) \
|
|
static void BM_##FUNC##_##D1##x##D2(int iters, int N) { \
|
|
StopBenchmarkTiming(); \
|
|
Eigen::SyclDevice device(&queue); \
|
|
BenchmarkSuite<Eigen::SyclDevice, float> suite(device, D1, D2); \
|
|
suite.FUNC(iters); \
|
|
} \
|
|
BENCHMARK_RANGE(BM_##FUNC##_##D1##x##D2, 10, 10);
|
|
|
|
BM_FuncWithInput2DimsGPU(rowReduction, 256, 100352);
|
|
BM_FuncWithInput2DimsGPU(rowReduction, 64, 100352);
|
|
BM_FuncWithInput2DimsGPU(rowReduction, 512, 25088);
|
|
BM_FuncWithInput2DimsGPU(rowReduction, 128, 25088);
|
|
BM_FuncWithInput2DimsGPU(rowReduction, 102, 6272);
|
|
BM_FuncWithInput2DimsGPU(rowReduction, 256, 6272);
|
|
BM_FuncWithInput2DimsGPU(rowReduction, 204, 1568);
|
|
BM_FuncWithInput2DimsGPU(rowReduction, 512, 1568);
|
|
BM_FuncWithInput2DimsGPU(rowReduction, 1024, 1568);
|
|
BM_FuncWithInput2DimsGPU(rowReduction, 2048, 1568);
|
|
|
|
BM_FuncWithInput2DimsGPU(colReduction, 100352, 256);
|
|
BM_FuncWithInput2DimsGPU(colReduction, 100352, 64);
|
|
BM_FuncWithInput2DimsGPU(colReduction, 25088, 512);
|
|
BM_FuncWithInput2DimsGPU(colReduction, 6272, 102);
|
|
BM_FuncWithInput2DimsGPU(colReduction, 25088, 128);
|
|
BM_FuncWithInput2DimsGPU(colReduction, 6272, 256);
|
|
BM_FuncWithInput2DimsGPU(colReduction, 1568, 204);
|
|
BM_FuncWithInput2DimsGPU(colReduction, 1568, 512);
|
|
BM_FuncWithInput2DimsGPU(colReduction, 1568, 1024);
|
|
BM_FuncWithInput2DimsGPU(colReduction, 1568, 2048);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 1001, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 2050048, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 2097152, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 2048, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 262144, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 256, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 589824, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 1024, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 524288, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 512, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 2359296, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 1048576, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 131072, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 16384, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 9408, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 64, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 4096, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 36864, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 32768, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 128, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 147456, 1);
|
|
BM_FuncWithInput2DimsGPU(fullReduction, 65536, 1);
|
|
#define BM_FuncGPU(FUNC) \
|
|
static void BM_##FUNC(int iters, int N) { \
|
|
StopBenchmarkTiming(); \
|
|
Eigen::SyclDevice device(&queue); \
|
|
BenchmarkSuite<Eigen::SyclDevice, float> suite(device, N); \
|
|
suite.FUNC(iters); \
|
|
} \
|
|
BENCHMARK_RANGE(BM_##FUNC, 10, 5000);
|
|
|
|
BM_FuncGPU(rowReduction);
|
|
BM_FuncGPU(colReduction);
|
|
BM_FuncGPU(fullReduction);
|
|
|
|
BM_FuncGPU(memcpy);
|
|
BM_FuncGPU(typeCasting);
|
|
BM_FuncGPU(random);
|
|
BM_FuncGPU(slicing);
|
|
BM_FuncGPU(rowChip);
|
|
BM_FuncGPU(colChip);
|
|
BM_FuncGPU(shuffling);
|
|
BM_FuncGPU(padding);
|
|
BM_FuncGPU(striding);
|
|
BM_FuncGPU(broadcasting);
|
|
BM_FuncGPU(coeffWiseOp);
|
|
BM_FuncGPU(algebraicFunc);
|
|
BM_FuncGPU(transcendentalFunc);
|
|
// Contractions
|
|
#define BM_FuncWithInputDimsGPU(FUNC, D1, D2, D3) \
|
|
static void BM_##FUNC##_##D1##x##D2##x##D3(int iters, int N) { \
|
|
StopBenchmarkTiming(); \
|
|
Eigen::SyclDevice device(&queue); \
|
|
BenchmarkSuite<Eigen::SyclDevice, float> suite(device, D1, D2, D3); \
|
|
suite.FUNC(iters); \
|
|
} \
|
|
BENCHMARK_RANGE(BM_##FUNC##_##D1##x##D2##x##D3, 10, 5000);
|
|
|
|
BM_FuncWithInputDimsGPU(contraction, N, N, N);
|
|
BM_FuncWithInputDimsGPU(contraction, 64, N, N);
|
|
BM_FuncWithInputDimsGPU(contraction, N, 64, N);
|
|
BM_FuncWithInputDimsGPU(contraction, N, N, 64);
|
|
|
|
BM_FuncWithInputDimsGPU(contractionRowMajor, N, N, N);
|
|
BM_FuncWithInputDimsGPU(contractionRowMajor, 64, N, N);
|
|
BM_FuncWithInputDimsGPU(contractionRowMajor, N, 64, N);
|
|
BM_FuncWithInputDimsGPU(contractionRowMajor, N, N, 64);
|
|
|
|
BM_FuncWithInputDimsGPU(contractionRowMajorAT, N, N, N);
|
|
BM_FuncWithInputDimsGPU(contractionRowMajorAT, 64, N, N);
|
|
BM_FuncWithInputDimsGPU(contractionRowMajorAT, N, 64, N);
|
|
BM_FuncWithInputDimsGPU(contractionRowMajorAT, N, N, 64);
|
|
|
|
BM_FuncWithInputDimsGPU(contractionRowMajorBT, N, N, N);
|
|
BM_FuncWithInputDimsGPU(contractionRowMajorBT, 64, N, N);
|
|
BM_FuncWithInputDimsGPU(contractionRowMajorBT, N, 64, N);
|
|
BM_FuncWithInputDimsGPU(contractionRowMajorBT, N, N, 64);
|
|
|
|
|
|
BM_FuncWithInputDimsGPU(contractionRowMajorABT, N, N, N);
|
|
BM_FuncWithInputDimsGPU(contractionRowMajorABT, 64, N, N);
|
|
BM_FuncWithInputDimsGPU(contractionRowMajorABT, N, 64, N);
|
|
BM_FuncWithInputDimsGPU(contractionRowMajorABT, N, N, 64);
|
|
|
|
// Convolutions
|
|
#define BM_FuncWithKernelDimsGPU(FUNC, DIM1, DIM2) \
|
|
static void BM_##FUNC##_##DIM1##x##DIM2(int iters, int N) { \
|
|
StopBenchmarkTiming(); \
|
|
Eigen::SyclDevice device(&queue); \
|
|
BenchmarkSuite<Eigen::SyclDevice, float> suite(device, N); \
|
|
suite.FUNC(iters, DIM1, DIM2); \
|
|
} \
|
|
BENCHMARK_RANGE(BM_##FUNC##_##DIM1##x##DIM2, 128, 5000);
|
|
|
|
BM_FuncWithKernelDimsGPU(convolution, 7, 1);
|
|
BM_FuncWithKernelDimsGPU(convolution, 1, 7);
|
|
BM_FuncWithKernelDimsGPU(convolution, 7, 4);
|
|
BM_FuncWithKernelDimsGPU(convolution, 4, 7);
|
|
BM_FuncWithKernelDimsGPU(convolution, 7, 64);
|
|
BM_FuncWithKernelDimsGPU(convolution, 64, 7);
|
|
#endif
|