mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
127 lines
5.9 KiB
C++
127 lines
5.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
static int nb_temporaries;
|
|
|
|
#define EIGEN_DEBUG_MATRIX_CTOR(MTYPE) { \
|
|
if(MTYPE::SizeAtCompileTime==Dynamic) \
|
|
nb_temporaries++; \
|
|
}
|
|
|
|
#include "main.h"
|
|
#include <Eigen/Array>
|
|
|
|
#define VERIFY_EVALUATION_COUNT(XPR,N) {\
|
|
nb_temporaries = 0; \
|
|
XPR; \
|
|
if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \
|
|
VERIFY( (#XPR) && nb_temporaries==N ); \
|
|
}
|
|
|
|
template<typename MatrixType> void product_notemporary(const MatrixType& m)
|
|
{
|
|
/* This test checks the number of tempories created
|
|
* during the evaluation of a complex expression */
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, 1, Dynamic> RowVectorType;
|
|
typedef Matrix<Scalar, Dynamic, 1> ColVectorType;
|
|
typedef Matrix<Scalar, Dynamic, Dynamic, RowMajor> RowMajorMatrixType;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m2 = MatrixType::Random(rows, cols),
|
|
m3(rows, cols);
|
|
RowVectorType rv1 = RowVectorType::Random(rows), rvres(rows);
|
|
ColVectorType vc2 = ColVectorType::Random(cols), cvres(cols);
|
|
RowMajorMatrixType rm3(rows, cols);
|
|
|
|
Scalar s1 = ei_random<Scalar>(),
|
|
s2 = ei_random<Scalar>(),
|
|
s3 = ei_random<Scalar>();
|
|
|
|
int c0 = ei_random<int>(4,cols-8),
|
|
c1 = ei_random<int>(8,cols-c0),
|
|
r0 = ei_random<int>(4,cols-8),
|
|
r1 = ei_random<int>(8,rows-r0);
|
|
|
|
VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()), 1);
|
|
VERIFY_EVALUATION_COUNT( m3 = (m1 * m2.adjoint()).lazy(), 0);
|
|
|
|
// NOTE in this case the slow product is used:
|
|
// FIXME:
|
|
// VERIFY_EVALUATION_COUNT( m3 = s1 * (m1 * m2.transpose()).lazy(), 0);
|
|
|
|
VERIFY_EVALUATION_COUNT( m3 = (s1 * m1 * s2 * m2.adjoint()).lazy(), 0);
|
|
VERIFY_EVALUATION_COUNT( m3 = (s1 * m1 * s2 * (m1*s3+m2*s2).adjoint()).lazy(), 1);
|
|
VERIFY_EVALUATION_COUNT( m3 = ((s1 * m1).adjoint() * s2 * m2).lazy(), 0);
|
|
VERIFY_EVALUATION_COUNT( m3 -= (s1 * (-m1*s3).adjoint() * (s2 * m2 * s3)).lazy(), 0);
|
|
VERIFY_EVALUATION_COUNT( m3 -= (s1 * (m1.transpose() * m2)).lazy(), 1);
|
|
|
|
VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1) += (-m1.block(r0,c0,r1,c1) * (s2*m2.block(r0,c0,r1,c1)).adjoint()).lazy() ), 0);
|
|
VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1) -= (s1 * m1.block(r0,c0,r1,c1) * m2.block(c0,r0,c1,r1)).lazy() ), 0);
|
|
|
|
// NOTE this is because the Block expression is not handled yet by our expression analyser
|
|
VERIFY_EVALUATION_COUNT(( m3.block(r0,r0,r1,r1) = (s1 * m1.block(r0,c0,r1,c1) * (s1*m2).block(c0,r0,c1,r1)).lazy() ), 1);
|
|
|
|
VERIFY_EVALUATION_COUNT( m3 -= ((s1 * m1).template triangularView<LowerTriangular>() * m2).lazy(), 0);
|
|
VERIFY_EVALUATION_COUNT( rm3 = ((s1 * m1.adjoint()).template triangularView<UpperTriangular>() * (m2+m2)).lazy(), 1);
|
|
VERIFY_EVALUATION_COUNT( rm3 = ((s1 * m1.adjoint()).template triangularView<UnitUpperTriangular>() * m2.adjoint()).lazy(), 0);
|
|
|
|
VERIFY_EVALUATION_COUNT( rm3.col(c0) = ((s1 * m1.adjoint()).template triangularView<UnitUpperTriangular>() * (s2*m2.row(c0)).adjoint()).lazy(), 0);
|
|
|
|
VERIFY_EVALUATION_COUNT( m1.template triangularView<LowerTriangular>().solveInPlace(m3), 0);
|
|
VERIFY_EVALUATION_COUNT( m1.adjoint().template triangularView<LowerTriangular>().solveInPlace(m3.transpose()), 0);
|
|
|
|
VERIFY_EVALUATION_COUNT( m3 -= ((s1 * m1).adjoint().template selfadjointView<LowerTriangular>() * (-m2*s3).adjoint()).lazy(), 0);
|
|
VERIFY_EVALUATION_COUNT( m3 = (s2 * m2.adjoint() * (s1 * m1.adjoint()).template selfadjointView<UpperTriangular>()).lazy(), 0);
|
|
VERIFY_EVALUATION_COUNT( rm3 = ((s1 * m1.adjoint()).template selfadjointView<LowerTriangular>() * m2.adjoint()).lazy(), 0);
|
|
|
|
VERIFY_EVALUATION_COUNT( m3.col(c0) = ((s1 * m1).adjoint().template selfadjointView<LowerTriangular>() * (-m2.row(c0)*s3).adjoint()).lazy(), 0);
|
|
VERIFY_EVALUATION_COUNT( m3.col(c0) -= ((s1 * m1).adjoint().template selfadjointView<UpperTriangular>() * (-m2.row(c0)*s3).adjoint()).lazy(), 0);
|
|
|
|
VERIFY_EVALUATION_COUNT( m3.block(r0,c0,r1,c1) += ((m1.block(r0,r0,r1,r1).template selfadjointView<UpperTriangular>() * (s1*m2.block(r0,c0,r1,c1)) )).lazy(), 0);
|
|
VERIFY_EVALUATION_COUNT( m3.block(r0,c0,r1,c1) = ((m1.block(r0,r0,r1,r1).template selfadjointView<UpperTriangular>() * m2.block(r0,c0,r1,c1) )).lazy(), 0);
|
|
|
|
VERIFY_EVALUATION_COUNT( m3.template selfadjointView<LowerTriangular>().rankUpdate(m2.adjoint()), 0);
|
|
|
|
m3.resize(1,1);
|
|
VERIFY_EVALUATION_COUNT( m3 = ((m1.block(r0,r0,r1,r1).template selfadjointView<LowerTriangular>() * m2.block(r0,c0,r1,c1) )).lazy(), 0);
|
|
m3.resize(1,1);
|
|
VERIFY_EVALUATION_COUNT( m3 = ((m1.block(r0,r0,r1,r1).template triangularView<UnitUpperTriangular>() * m2.block(r0,c0,r1,c1) )).lazy(), 0);
|
|
}
|
|
|
|
void test_product_notemporary()
|
|
{
|
|
int s;
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
s = ei_random<int>(16,320);
|
|
CALL_SUBTEST( product_notemporary(MatrixXf(s, s)) );
|
|
s = ei_random<int>(16,120);
|
|
CALL_SUBTEST( product_notemporary(MatrixXcd(s,s)) );
|
|
}
|
|
}
|