mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
96 lines
3.9 KiB
C++
96 lines
3.9 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
|
|
template<typename MatrixType> void product_selfadjoint(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Index Index;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
typedef Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> RowVectorType;
|
|
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, Dynamic, RowMajor> RhsMatrixType;
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m2 = MatrixType::Random(rows, cols),
|
|
m3;
|
|
VectorType v1 = VectorType::Random(rows),
|
|
v2 = VectorType::Random(rows),
|
|
v3(rows);
|
|
RowVectorType r1 = RowVectorType::Random(rows),
|
|
r2 = RowVectorType::Random(rows);
|
|
RhsMatrixType m4 = RhsMatrixType::Random(rows,10);
|
|
|
|
Scalar s1 = ei_random<Scalar>(),
|
|
s2 = ei_random<Scalar>(),
|
|
s3 = ei_random<Scalar>();
|
|
|
|
m1 = (m1.adjoint() + m1).eval();
|
|
|
|
// rank2 update
|
|
m2 = m1.template triangularView<Lower>();
|
|
m2.template selfadjointView<Lower>().rankUpdate(v1,v2);
|
|
VERIFY_IS_APPROX(m2, (m1 + v1 * v2.adjoint()+ v2 * v1.adjoint()).template triangularView<Lower>().toDenseMatrix());
|
|
|
|
m2 = m1.template triangularView<Upper>();
|
|
m2.template selfadjointView<Upper>().rankUpdate(-v1,s2*v2,s3);
|
|
VERIFY_IS_APPROX(m2, (m1 + (-s2*s3) * (v1 * v2.adjoint()+ v2 * v1.adjoint())).template triangularView<Upper>().toDenseMatrix());
|
|
|
|
m2 = m1.template triangularView<Upper>();
|
|
m2.template selfadjointView<Upper>().rankUpdate(-r1.adjoint(),r2.adjoint()*s3,s1);
|
|
VERIFY_IS_APPROX(m2, (m1 + (-s3*s1) * (r1.adjoint() * r2 + r2.adjoint() * r1)).template triangularView<Upper>().toDenseMatrix());
|
|
|
|
if (rows>1)
|
|
{
|
|
m2 = m1.template triangularView<Lower>();
|
|
m2.block(1,1,rows-1,cols-1).template selfadjointView<Lower>().rankUpdate(v1.tail(rows-1),v2.head(cols-1));
|
|
m3 = m1;
|
|
m3.block(1,1,rows-1,cols-1) += v1.tail(rows-1) * v2.head(cols-1).adjoint()+ v2.head(cols-1) * v1.tail(rows-1).adjoint();
|
|
VERIFY_IS_APPROX(m2, m3.template triangularView<Lower>().toDenseMatrix());
|
|
}
|
|
}
|
|
|
|
void test_product_selfadjoint()
|
|
{
|
|
int s;
|
|
for(int i = 0; i < g_repeat ; i++) {
|
|
CALL_SUBTEST_1( product_selfadjoint(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( product_selfadjoint(Matrix<float, 2, 2>()) );
|
|
CALL_SUBTEST_3( product_selfadjoint(Matrix3d()) );
|
|
s = ei_random<int>(1,150);
|
|
CALL_SUBTEST_4( product_selfadjoint(MatrixXcf(s, s)) );
|
|
s = ei_random<int>(1,150);
|
|
CALL_SUBTEST_5( product_selfadjoint(MatrixXcd(s,s)) );
|
|
s = ei_random<int>(1,320);
|
|
CALL_SUBTEST_6( product_selfadjoint(MatrixXd(s,s)) );
|
|
s = ei_random<int>(1,320);
|
|
CALL_SUBTEST_7( product_selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(s,s)) );
|
|
}
|
|
}
|