mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
522e24f2d7
replaced the QTestLib framework my custom macros and a (optional) custom script to run the tests from ctest.
136 lines
5.5 KiB
C++
136 lines
5.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
|
|
// check minor separately in order to avoid the possible creation of a zero-sized
|
|
// array. Comes from a compilation error with gcc-3.4 or gcc-4 with -ansi -pedantic.
|
|
// Another solution would be to declare the array like this: T m_data[Size==0?1:Size]; in ei_matrix_storage
|
|
// but this is probably not bad to raise such an error at compile time...
|
|
template<typename Scalar, int _Rows, int _Cols> struct CheckMinor
|
|
{
|
|
typedef Matrix<Scalar, _Rows, _Cols> MatrixType;
|
|
CheckMinor(MatrixType& m1, int r1, int c1)
|
|
{
|
|
int rows = m1.rows();
|
|
int cols = m1.cols();
|
|
|
|
Matrix<Scalar, Dynamic, Dynamic> mi = m1.minor(0,0).eval();
|
|
VERIFY_IS_APPROX(mi, m1.block(1,1,rows-1,cols-1));
|
|
mi = m1.minor(r1,c1);
|
|
VERIFY_IS_APPROX(mi.transpose(), m1.transpose().minor(c1,r1));
|
|
//check operator(), both constant and non-constant, on minor()
|
|
m1.minor(r1,c1)(0,0) = m1.minor(0,0)(0,0);
|
|
}
|
|
};
|
|
|
|
template<typename Scalar> struct CheckMinor<Scalar,1,1>
|
|
{
|
|
typedef Matrix<Scalar, 1, 1> MatrixType;
|
|
CheckMinor(MatrixType&, int, int) {}
|
|
};
|
|
|
|
template<typename MatrixType> void submatrices(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
Row.h Column.h Block.h Minor.h DiagonalCoeffs.h
|
|
*/
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::random(rows, cols),
|
|
m2 = MatrixType::random(rows, cols),
|
|
m3(rows, cols),
|
|
mzero = MatrixType::zero(rows, cols),
|
|
identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
|
|
::identity(rows, rows),
|
|
square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
|
|
::random(rows, rows);
|
|
VectorType v1 = VectorType::random(rows),
|
|
v2 = VectorType::random(rows),
|
|
v3 = VectorType::random(rows),
|
|
vzero = VectorType::zero(rows);
|
|
|
|
Scalar s1 = ei_random<Scalar>();
|
|
|
|
int r1 = ei_random<int>(0,rows-1);
|
|
int r2 = ei_random<int>(r1,rows-1);
|
|
int c1 = ei_random<int>(0,cols-1);
|
|
int c2 = ei_random<int>(c1,cols-1);
|
|
|
|
//check row() and col()
|
|
VERIFY_IS_APPROX(m1.col(c1).transpose(), m1.transpose().row(c1));
|
|
VERIFY_IS_APPROX(square.row(r1).dot(m1.col(c1)), (square.lazy() * m1.conjugate())(r1,c1));
|
|
//check operator(), both constant and non-constant, on row() and col()
|
|
m1.row(r1) += s1 * m1.row(r2);
|
|
m1.col(c1) += s1 * m1.col(c2);
|
|
|
|
//check block()
|
|
Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
|
|
RowVectorType br1(m1.block(r1,0,1,cols));
|
|
VectorType bc1(m1.block(0,c1,rows,1));
|
|
VERIFY_IS_APPROX(b1, m1.block(r1,c1,1,1));
|
|
VERIFY_IS_APPROX(m1.row(r1), br1);
|
|
VERIFY_IS_APPROX(m1.col(c1), bc1);
|
|
//check operator(), both constant and non-constant, on block()
|
|
m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1);
|
|
m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0);
|
|
|
|
//check minor()
|
|
CheckMinor<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> checkminor(m1,r1,c1);
|
|
|
|
//check diagonal()
|
|
VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal());
|
|
m2.diagonal() = 2 * m1.diagonal();
|
|
m2.diagonal()[0] *= 3;
|
|
VERIFY_IS_APPROX(m2.diagonal()[0], static_cast<Scalar>(6) * m1.diagonal()[0]);
|
|
|
|
const int BlockRows = EIGEN_ENUM_MIN(MatrixType::RowsAtCompileTime,2);
|
|
const int BlockCols = EIGEN_ENUM_MIN(MatrixType::ColsAtCompileTime,5);
|
|
if (rows>=5 && cols>=8)
|
|
{
|
|
// test fixed block() as lvalue
|
|
m1.template block<BlockRows,BlockCols>(1,1) *= s1;
|
|
// test operator() on fixed block() both as constant and non-constant
|
|
m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2);
|
|
// check that fixed block() and block() agree
|
|
Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3);
|
|
VERIFY_IS_APPROX(b, m1.block(3,3,BlockRows,BlockCols));
|
|
}
|
|
}
|
|
|
|
void test_submatrices()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST( submatrices(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST( submatrices(Matrix4d()) );
|
|
CALL_SUBTEST( submatrices(MatrixXcf(3, 3)) );
|
|
CALL_SUBTEST( submatrices(MatrixXi(8, 12)) );
|
|
CALL_SUBTEST( submatrices(MatrixXcd(20, 20)) );
|
|
}
|
|
}
|