mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
00f32752f7
* Unifying all loadLocalTile from lhs and rhs to an extract_block function. * Adding get_tensor operation which was missing in TensorContractionMapper. * Adding the -D method missing from cmake for Disable_Skinny Contraction operation. * Wrapping all the indices in TensorScanSycl into Scan parameter struct. * Fixing typo in Device SYCL * Unifying load to private register for tall/skinny no shared * Unifying load to vector tile for tensor-vector/vector-tensor operation * Removing all the LHS/RHS class for extracting data from global * Removing Outputfunction from TensorContractionSkinnyNoshared. * Combining the local memory version of tall/skinny and normal tensor contraction into one kernel. * Combining the no-local memory version of tall/skinny and normal tensor contraction into one kernel. * Combining General Tensor-Vector and VectorTensor contraction into one kernel. * Making double buffering optional for Tensor contraction when local memory is version is used. * Modifying benchmark to accept custom Reduction Sizes * Disabling AVX optimization for SYCL backend on the host to allow SSE optimization to the host * Adding Test for SYCL * Modifying SYCL CMake
142 lines
6.2 KiB
C++
142 lines
6.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2016
|
|
// Mehdi Goli Codeplay Software Ltd.
|
|
// Ralph Potter Codeplay Software Ltd.
|
|
// Luke Iwanski Codeplay Software Ltd.
|
|
// Contact: <eigen@codeplay.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
#define EIGEN_TEST_NO_COMPLEX
|
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
|
|
#define EIGEN_USE_SYCL
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::Tensor;
|
|
typedef Tensor<float, 1>::DimensionPair DimPair;
|
|
|
|
template <typename DataType, int DataLayout, typename IndexType>
|
|
void test_sycl_cumsum(const Eigen::SyclDevice& sycl_device, IndexType m_size,
|
|
IndexType k_size, IndexType n_size, int consume_dim,
|
|
bool exclusive) {
|
|
static const DataType error_threshold = 1e-4f;
|
|
std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size
|
|
<< " consume_dim : " << consume_dim << ")" << std::endl;
|
|
Tensor<DataType, 3, DataLayout, IndexType> t_input(m_size, k_size, n_size);
|
|
Tensor<DataType, 3, DataLayout, IndexType> t_result(m_size, k_size, n_size);
|
|
Tensor<DataType, 3, DataLayout, IndexType> t_result_gpu(m_size, k_size,
|
|
n_size);
|
|
|
|
t_input.setRandom();
|
|
std::size_t t_input_bytes = t_input.size() * sizeof(DataType);
|
|
std::size_t t_result_bytes = t_result.size() * sizeof(DataType);
|
|
|
|
DataType* gpu_data_in =
|
|
static_cast<DataType*>(sycl_device.allocate(t_input_bytes));
|
|
DataType* gpu_data_out =
|
|
static_cast<DataType*>(sycl_device.allocate(t_result_bytes));
|
|
|
|
array<IndexType, 3> tensorRange = {{m_size, k_size, n_size}};
|
|
TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_t_input(
|
|
gpu_data_in, tensorRange);
|
|
TensorMap<Tensor<DataType, 3, DataLayout, IndexType>> gpu_t_result(
|
|
gpu_data_out, tensorRange);
|
|
sycl_device.memcpyHostToDevice(gpu_data_in, t_input.data(), t_input_bytes);
|
|
sycl_device.memcpyHostToDevice(gpu_data_out, t_input.data(), t_input_bytes);
|
|
|
|
gpu_t_result.device(sycl_device) = gpu_t_input.cumsum(consume_dim, exclusive);
|
|
|
|
t_result = t_input.cumsum(consume_dim, exclusive);
|
|
|
|
sycl_device.memcpyDeviceToHost(t_result_gpu.data(), gpu_data_out,
|
|
t_result_bytes);
|
|
sycl_device.synchronize();
|
|
|
|
for (IndexType i = 0; i < t_result.size(); i++) {
|
|
if (static_cast<DataType>(std::fabs(static_cast<DataType>(
|
|
t_result(i) - t_result_gpu(i)))) < error_threshold) {
|
|
continue;
|
|
}
|
|
if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i),
|
|
error_threshold)) {
|
|
continue;
|
|
}
|
|
std::cout << "mismatch detected at index " << i << " CPU : " << t_result(i)
|
|
<< " vs SYCL : " << t_result_gpu(i) << std::endl;
|
|
assert(false);
|
|
}
|
|
sycl_device.deallocate(gpu_data_in);
|
|
sycl_device.deallocate(gpu_data_out);
|
|
}
|
|
|
|
template <typename DataType, typename Dev>
|
|
void sycl_scan_test_exclusive_dim0_per_device(const Dev& sycl_device) {
|
|
test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 2049, 1023, 127, 0,
|
|
true);
|
|
test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 2049, 1023, 127, 0,
|
|
true);
|
|
}
|
|
template <typename DataType, typename Dev>
|
|
void sycl_scan_test_exclusive_dim1_per_device(const Dev& sycl_device) {
|
|
test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 1023, 2049, 127, 1,
|
|
true);
|
|
test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 1023, 2049, 127, 1,
|
|
true);
|
|
}
|
|
template <typename DataType, typename Dev>
|
|
void sycl_scan_test_exclusive_dim2_per_device(const Dev& sycl_device) {
|
|
test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 1023, 127, 2049, 2,
|
|
true);
|
|
test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 1023, 127, 2049, 2,
|
|
true);
|
|
}
|
|
template <typename DataType, typename Dev>
|
|
void sycl_scan_test_inclusive_dim0_per_device(const Dev& sycl_device) {
|
|
test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 2049, 1023, 127, 0,
|
|
false);
|
|
test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 2049, 1023, 127, 0,
|
|
false);
|
|
}
|
|
template <typename DataType, typename Dev>
|
|
void sycl_scan_test_inclusive_dim1_per_device(const Dev& sycl_device) {
|
|
test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 1023, 2049, 127, 1,
|
|
false);
|
|
test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 1023, 2049, 127, 1,
|
|
false);
|
|
}
|
|
template <typename DataType, typename Dev>
|
|
void sycl_scan_test_inclusive_dim2_per_device(const Dev& sycl_device) {
|
|
test_sycl_cumsum<DataType, ColMajor, int64_t>(sycl_device, 1023, 127, 2049, 2,
|
|
false);
|
|
test_sycl_cumsum<DataType, RowMajor, int64_t>(sycl_device, 1023, 127, 2049, 2,
|
|
false);
|
|
}
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_scan_sycl) {
|
|
for (const auto& device : Eigen::get_sycl_supported_devices()) {
|
|
std::cout << "Running on "
|
|
<< device.template get_info<cl::sycl::info::device::name>()
|
|
<< std::endl;
|
|
QueueInterface queueInterface(device);
|
|
auto sycl_device = Eigen::SyclDevice(&queueInterface);
|
|
CALL_SUBTEST_1(
|
|
sycl_scan_test_exclusive_dim0_per_device<float>(sycl_device));
|
|
CALL_SUBTEST_2(
|
|
sycl_scan_test_exclusive_dim1_per_device<float>(sycl_device));
|
|
CALL_SUBTEST_3(
|
|
sycl_scan_test_exclusive_dim2_per_device<float>(sycl_device));
|
|
CALL_SUBTEST_4(
|
|
sycl_scan_test_inclusive_dim0_per_device<float>(sycl_device));
|
|
CALL_SUBTEST_5(
|
|
sycl_scan_test_inclusive_dim1_per_device<float>(sycl_device));
|
|
CALL_SUBTEST_6(
|
|
sycl_scan_test_inclusive_dim2_per_device<float>(sycl_device));
|
|
}
|
|
}
|