mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
71 lines
2.6 KiB
C++
71 lines
2.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/QR>
|
|
#include <Eigen/LU>
|
|
|
|
template<typename MatrixType> void eigensolver(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
ComplexEigenSolver.h
|
|
*/
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
|
typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
|
|
|
// RealScalar largerEps = 10*test_precision<RealScalar>();
|
|
|
|
MatrixType a = MatrixType::Random(rows,cols);
|
|
MatrixType a1 = MatrixType::Random(rows,cols);
|
|
MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
|
|
|
|
// ComplexEigenSolver<MatrixType> ei0(symmA);
|
|
|
|
// VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal());
|
|
|
|
// a.imag().setZero();
|
|
// std::cerr << a << "\n\n";
|
|
ComplexEigenSolver<MatrixType> ei1(a);
|
|
// exit(1);
|
|
VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
|
|
|
|
}
|
|
|
|
void test_eigensolver_complex()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
// CALL_SUBTEST( eigensolver(Matrix4cf()) );
|
|
// CALL_SUBTEST( eigensolver(MatrixXcd(4,4)) );
|
|
CALL_SUBTEST( eigensolver(MatrixXcd(6,6)) );
|
|
// CALL_SUBTEST( eigensolver(MatrixXd(14,14)) );
|
|
}
|
|
}
|
|
|