eigen/blas/level1_impl.h
Gael Guennebaud 04dc63776a add a wip blas library built on top of Eigen. TODO:
- write extentive unit tests (maybe this already exist in other projects)
- the level2 functions still have to be implemented
2009-09-25 13:08:39 +02:00

226 lines
6.1 KiB
C

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "common.h"
int EIGEN_BLAS_FUNC(axpy)(int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
if(*incx==1 && *incy==1)
vector(y,*n) += alpha * vector(x,*n);
else
vector(y,*n,*incy) += alpha * vector(x,*n,*incx);
return 1;
}
// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
RealScalar EIGEN_BLAS_FUNC(asum)(int *n, RealScalar *px, int *incx)
{
int size = IsComplex ? 2* *n : *n;
if(*incx==1)
return vector(px,size).cwise().abs().sum();
else
return vector(px,size,*incx).cwise().abs().sum();
return 1;
}
int EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
int size = IsComplex ? 2* *n : *n;
if(*incx==1 && *incy==1)
vector(py,size) = vector(px,size);
else
vector(py,size,*incy) = vector(px,size,*incx);
return 1;
}
// computes a vector-vector dot product.
Scalar EIGEN_BLAS_FUNC(dot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
if(*incx==1 && *incy==1)
return (vector(x,*n).cwise()*vector(y,*n)).sum();
return (vector(x,*n,*incx).cwise()*vector(y,*n,*incy)).sum();
}
/*
// computes a vector-vector dot product with extended precision.
Scalar EIGEN_BLAS_FUNC(sdot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
// TODO
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
if(*incx==1 && *incy==1)
return vector(x,*n).dot(vector(y,*n));
return vector(x,*n,*incx).dot(vector(y,*n,*incy));
}
*/
#if ISCOMPLEX
// computes a dot product of a conjugated vector with another vector.
Scalar EIGEN_BLAS_FUNC(dotc)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
if(*incx==1 && *incy==1)
return vector(x,*n).dot(vector(y,*n));
return vector(x,*n,*incx).dot(vector(y,*n,*incy));
}
// computes a vector-vector dot product without complex conjugation.
Scalar EIGEN_BLAS_FUNC(dotu)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
if(*incx==1 && *incy==1)
return (vector(x,*n).cwise()*vector(y,*n)).sum();
return (vector(x,*n,*incx).cwise()*vector(y,*n,*incy)).sum();
}
#endif // ISCOMPLEX
// computes the Euclidean norm of a vector.
Scalar EIGEN_BLAS_FUNC(nrm2)(int *n, RealScalar *px, int *incx)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
if(*incx==1)
return vector(x,*n).norm();
return vector(x,*n,*incx).norm();
}
int EIGEN_BLAS_FUNC(rot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar c = *reinterpret_cast<Scalar*>(pc);
Scalar s = *reinterpret_cast<Scalar*>(ps);
StridedVectorType vx(vector(x,*n,*incx));
StridedVectorType vy(vector(y,*n,*incy));
ei_apply_rotation_in_the_plane(vx, vy, PlanarRotation<Scalar>(c,s));
return 1;
}
int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps)
{
Scalar a = *reinterpret_cast<Scalar*>(pa);
Scalar b = *reinterpret_cast<Scalar*>(pb);
Scalar* c = reinterpret_cast<Scalar*>(pc);
Scalar* s = reinterpret_cast<Scalar*>(ps);
PlanarRotation<Scalar> r;
r.makeGivens(a,b);
*c = r.c();
*s = r.s();
return 1;
}
#if !ISCOMPLEX
/*
// performs rotation of points in the modified plane.
int EIGEN_BLAS_FUNC(rotm)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *param)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
// TODO
return 0;
}
// computes the modified parameters for a Givens rotation.
int EIGEN_BLAS_FUNC(rotmg)(RealScalar *d1, RealScalar *d2, RealScalar *x1, RealScalar *x2, RealScalar *param)
{
// TODO
return 0;
}
*/
#endif // !ISCOMPLEX
int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *px, int *incx, RealScalar *palpha)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
if(*incx==1)
vector(x,*n) *= alpha;
vector(x,*n,*incx) *= alpha;
return 1;
}
int EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
int size = IsComplex ? 2* *n : *n;
if(*incx==1 && *incy==1)
vector(py,size).swap(vector(px,size));
else
vector(py,size,*incy).swap(vector(px,size,*incx));
return 1;
}
#if !ISCOMPLEX
RealScalar EIGEN_BLAS_FUNC(casum)(int *n, RealScalar *px, int *incx)
{
Complex* x = reinterpret_cast<Complex*>(px);
if(*incx==1)
return vector(x,*n).cwise().abs().sum();
else
return vector(x,*n,*incx).cwise().abs().sum();
return 1;
}
#endif // ISCOMPLEX