eigen/unsupported/Eigen/FFT
2009-10-30 20:26:30 -04:00

197 lines
6.6 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_FFT_H
#define EIGEN_FFT_H
#include <complex>
#include <vector>
#include <map>
#include <Eigen/Core>
#ifdef EIGEN_FFTW_DEFAULT
// FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size
# include <fftw3.h>
namespace Eigen {
# include "src/FFT/ei_fftw_impl.h"
//template <typename T> typedef struct ei_fftw_impl default_fft_impl; this does not work
template <typename T> struct default_fft_impl : public ei_fftw_impl<T> {};
}
#elif defined EIGEN_MKL_DEFAULT
// TODO
// intel Math Kernel Library: fastest, commercial -- may be incompatible with Eigen in GPL form
namespace Eigen {
# include "src/FFT/ei_imklfft_impl.h"
template <typename T> struct default_fft_impl : public ei_imklfft_impl {};
}
#else
// ei_kissfft_impl: small, free, reasonably efficient default, derived from kissfft
//
namespace Eigen {
# include "src/FFT/ei_kissfft_impl.h"
template <typename T>
struct default_fft_impl : public ei_kissfft_impl<T> {};
}
#endif
namespace Eigen {
template <typename _Scalar,
typename _Impl=default_fft_impl<_Scalar> >
class FFT
{
public:
typedef _Impl impl_type;
typedef typename impl_type::Scalar Scalar;
typedef typename impl_type::Complex Complex;
enum Flag {
Default=0, // goof proof
Unscaled=1,
HalfSpectrum=2,
// SomeOtherSpeedOptimization=4
Speedy=32767
};
FFT( const impl_type & impl=impl_type() , Flag flags=Default ) :m_impl(impl),m_flag(flags) { }
inline
bool HasFlag(Flag f) const { return (m_flag & (int)f) == f;}
inline
void SetFlag(Flag f) { m_flag |= (int)f;}
inline
void ClearFlag(Flag f) { m_flag &= (~(int)f);}
void fwd( Complex * dst, const Scalar * src, int nfft)
{
m_impl.fwd(dst,src,nfft);
if ( HasFlag(HalfSpectrum) == false)
ReflectSpectrum(dst,nfft);
}
void fwd( Complex * dst, const Complex * src, int nfft)
{
m_impl.fwd(dst,src,nfft);
}
template <typename _Input>
void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
{
if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
dst.resize( (src.size()>>1)+1);
else
dst.resize(src.size());
fwd(&dst[0],&src[0],src.size());
}
template<typename InputDerived, typename ComplexDerived>
void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time
EIGEN_STATIC_ASSERT((ei_is_same_type<typename ComplexDerived::Scalar, Complex>::ret),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
if ( NumTraits< typename InputDerived::Scalar >::IsComplex == 0 && HasFlag(HalfSpectrum) )
dst.derived().resize( (src.size()>>1)+1);
else
dst.derived().resize(src.size());
fwd( &dst[0],&src[0],src.size() );
}
void inv( Complex * dst, const Complex * src, int nfft)
{
m_impl.inv( dst,src,nfft );
if ( HasFlag( Unscaled ) == false)
scale(dst,1./nfft,nfft);
}
void inv( Scalar * dst, const Complex * src, int nfft)
{
m_impl.inv( dst,src,nfft );
if ( HasFlag( Unscaled ) == false)
scale(dst,1./nfft,nfft);
}
template<typename OutputDerived, typename ComplexDerived>
void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,OutputDerived) // size at compile-time
EIGEN_STATIC_ASSERT((ei_is_same_type<typename ComplexDerived::Scalar, Complex>::ret),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
int nfft = src.size();
int nout = HasFlag(HalfSpectrum) ? ((nfft>>1)+1) : nfft;
dst.derived().resize( nout );
inv( &dst[0],&src[0],src.size() );
}
template <typename _Output>
void inv( std::vector<_Output> & dst, const std::vector<Complex> & src)
{
if ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) )
dst.resize( 2*(src.size()-1) );
else
dst.resize( src.size() );
inv( &dst[0],&src[0],dst.size() );
}
// TODO: multi-dimensional FFTs
// TODO: handle Eigen MatrixBase
// ---> i added fwd and inv specializations above + unit test, is this enough? (bjacob)
impl_type & impl() {return m_impl;}
private:
template <typename _It,typename _Val>
void scale(_It x,_Val s,int nx)
{
for (int k=0;k<nx;++k)
*x++ *= s;
}
void ReflectSpectrum(Complex * freq,int nfft)
{
int nhbins=(nfft>>1)+1;
for (int k=nhbins;k < nfft; ++k )
freq[k] = conj(freq[nfft-k]);
}
impl_type m_impl;
int m_flag;
};
}
#endif
/* vim: set filetype=cpp et sw=2 ts=2 ai: */