eigen/Eigen
Rasmus Munk Larsen 4c0fa6ce0f Speed up Eigen matrix*vector and vector*matrix multiplication.
This change speeds up Eigen matrix * vector and vector * matrix multiplication for dynamic matrices when it is known at runtime that one of the factors is a vector.

The benchmarks below test

c.noalias()= n_by_n_matrix * n_by_1_matrix;
c.noalias()= 1_by_n_matrix * n_by_n_matrix;
respectively.

Benchmark measurements:

SSE:
Run on *** (72 X 2992 MHz CPUs); 2019-01-28T17:51:44.452697457-08:00
CPU: Intel Skylake Xeon with HyperThreading (36 cores) dL1:32KB dL2:1024KB dL3:24MB
Benchmark                          Base (ns)  New (ns) Improvement
------------------------------------------------------------------
BM_MatVec/64                            1096       312    +71.5%
BM_MatVec/128                           4581      1464    +68.0%
BM_MatVec/256                          18534      5710    +69.2%
BM_MatVec/512                         118083     24162    +79.5%
BM_MatVec/1k                          704106    173346    +75.4%
BM_MatVec/2k                         3080828    742728    +75.9%
BM_MatVec/4k                        25421512   4530117    +82.2%
BM_VecMat/32                             352       130    +63.1%
BM_VecMat/64                            1213       425    +65.0%
BM_VecMat/128                           4640      1564    +66.3%
BM_VecMat/256                          17902      5884    +67.1%
BM_VecMat/512                          70466     24000    +65.9%
BM_VecMat/1k                          340150    161263    +52.6%
BM_VecMat/2k                         1420590    645576    +54.6%
BM_VecMat/4k                         8083859   4364327    +46.0%

AVX2:
Run on *** (72 X 2993 MHz CPUs); 2019-01-28T17:45:11.508545307-08:00
CPU: Intel Skylake Xeon with HyperThreading (36 cores) dL1:32KB dL2:1024KB dL3:24MB
Benchmark                          Base (ns)  New (ns) Improvement
------------------------------------------------------------------
BM_MatVec/64                             619       120    +80.6%
BM_MatVec/128                           9693       752    +92.2%
BM_MatVec/256                          38356      2773    +92.8%
BM_MatVec/512                          69006     12803    +81.4%
BM_MatVec/1k                          443810    160378    +63.9%
BM_MatVec/2k                         2633553    646594    +75.4%
BM_MatVec/4k                        16211095   4327148    +73.3%
BM_VecMat/64                             925       227    +75.5%
BM_VecMat/128                           3438       830    +75.9%
BM_VecMat/256                          13427      2936    +78.1%
BM_VecMat/512                          53944     12473    +76.9%
BM_VecMat/1k                          302264    157076    +48.0%
BM_VecMat/2k                         1396811    675778    +51.6%
BM_VecMat/4k                         8962246   4459010    +50.2%

AVX512:
Run on *** (72 X 2993 MHz CPUs); 2019-01-28T17:35:17.239329863-08:00
CPU: Intel Skylake Xeon with HyperThreading (36 cores) dL1:32KB dL2:1024KB dL3:24MB
Benchmark                          Base (ns)  New (ns) Improvement
------------------------------------------------------------------
BM_MatVec/64                             401       111    +72.3%
BM_MatVec/128                           1846       513    +72.2%
BM_MatVec/256                          36739      1927    +94.8%
BM_MatVec/512                          54490      9227    +83.1%
BM_MatVec/1k                          487374    161457    +66.9%
BM_MatVec/2k                         2016270    643824    +68.1%
BM_MatVec/4k                        13204300   4077412    +69.1%
BM_VecMat/32                             324       106    +67.3%
BM_VecMat/64                            1034       246    +76.2%
BM_VecMat/128                           3576       802    +77.6%
BM_VecMat/256                          13411      2561    +80.9%
BM_VecMat/512                          58686     10037    +82.9%
BM_VecMat/1k                          320862    163750    +49.0%
BM_VecMat/2k                         1406719    651397    +53.7%
BM_VecMat/4k                         7785179   4124677    +47.0%
Currently watchingStop watching
2019-01-31 14:24:08 -08:00
..
src Speed up Eigen matrix*vector and vector*matrix multiplication. 2019-01-31 14:24:08 -08:00
Cholesky bug #1455: Cholesky module depends on Jacobi for rank-updates. 2017-08-22 11:37:32 +02:00
CholmodSupport
CMakeLists.txt
Core Implement AVX512 vectorization of std::complex<float/double> 2018-12-06 15:58:06 +01:00
Dense
Eigen
Eigenvalues Old gcc versions have problems with recursive #pragma GCC diagnostic push/pop 2018-08-28 11:44:15 +02:00
Geometry Old gcc versions have problems with recursive #pragma GCC diagnostic push/pop 2018-08-28 11:44:15 +02:00
Householder
IterativeLinearSolvers
Jacobi
KLUSupport Move KLU support to official 2017-11-10 14:11:22 +01:00
LU use MKL's lapacke.h header when using MKL 2017-08-17 21:58:39 +02:00
MetisSupport
OrderingMethods
PardisoSupport Extend CUDA support to matrix inversion and selfadjointeigensolver 2018-06-11 18:33:24 +02:00
PaStiXSupport clarify Pastix requirements 2017-11-27 22:11:57 +01:00
QR Old gcc versions have problems with recursive #pragma GCC diagnostic push/pop 2018-08-28 11:44:15 +02:00
QtAlignedMalloc bug #1468 (1/2) : add missing std:: to memcpy 2017-09-22 09:23:24 +02:00
Sparse bug #1392: fix #include <Eigen/Sparse> with mpl2-only 2017-02-11 10:35:01 +01:00
SparseCholesky
SparseCore
SparseLU Fix numerous shadow-warnings for GCC<=4.8 2018-08-28 18:32:39 +02:00
SparseQR Old gcc versions have problems with recursive #pragma GCC diagnostic push/pop 2018-08-28 11:44:15 +02:00
SPQRSupport
StdDeque bug #1389: MSVC's std containers do not properly align in 64 bits mode if the requested alignment is larger than 16 bytes (e.g., with AVX) 2017-02-03 15:22:35 +01:00
StdList bug #1389: MSVC's std containers do not properly align in 64 bits mode if the requested alignment is larger than 16 bytes (e.g., with AVX) 2017-02-03 15:22:35 +01:00
StdVector bug #1389: MSVC's std containers do not properly align in 64 bits mode if the requested alignment is larger than 16 bytes (e.g., with AVX) 2017-02-03 15:22:35 +01:00
SuperLUSupport
SVD use MKL's lapacke.h header when using MKL 2017-08-17 21:58:39 +02:00
UmfPackSupport