mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
2840ac7e94
* renaming, e.g. LU ---> FullPivLU * split tests framework: more robust, e.g. dont generate empty tests if a number is skipped * make all remaining tests use that splitting, as needed. * Fix 4x4 inversion (see stable branch) * Transform::inverse() and geo_transform test : adapt to new inverse() API, it was also trying to instantiate inverse() for 3x4 matrices. * CMakeLists: more robust regexp to parse the version number * misc fixes in unit tests
112 lines
4.0 KiB
C++
112 lines
4.0 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/Geometry>
|
|
|
|
template<typename Scalar,int Size> void homogeneous(void)
|
|
{
|
|
/* this test covers the following files:
|
|
Homogeneous.h
|
|
*/
|
|
|
|
typedef Matrix<Scalar,Size,Size> MatrixType;
|
|
typedef Matrix<Scalar,Size,1> VectorType;
|
|
|
|
typedef Matrix<Scalar,Size+1,Size> HMatrixType;
|
|
typedef Matrix<Scalar,Size+1,1> HVectorType;
|
|
|
|
typedef Matrix<Scalar,Size,Size+1> T1MatrixType;
|
|
typedef Matrix<Scalar,Size+1,Size+1> T2MatrixType;
|
|
typedef Matrix<Scalar,Size+1,Size> T3MatrixType;
|
|
|
|
Scalar largeEps = test_precision<Scalar>();
|
|
if (ei_is_same_type<Scalar,float>::ret)
|
|
largeEps = 1e-3f;
|
|
|
|
VectorType v0 = VectorType::Random(),
|
|
v1 = VectorType::Random(),
|
|
ones = VectorType::Ones();
|
|
|
|
HVectorType hv0 = HVectorType::Random(),
|
|
hv1 = HVectorType::Random();
|
|
|
|
MatrixType m0 = MatrixType::Random(),
|
|
m1 = MatrixType::Random();
|
|
|
|
HMatrixType hm0 = HMatrixType::Random(),
|
|
hm1 = HMatrixType::Random();
|
|
|
|
hv0 << v0, 1;
|
|
VERIFY_IS_APPROX(v0.homogeneous(), hv0);
|
|
VERIFY_IS_APPROX(v0, hv0.hnormalized());
|
|
|
|
hm0 << m0, ones.transpose();
|
|
VERIFY_IS_APPROX(m0.colwise().homogeneous(), hm0);
|
|
VERIFY_IS_APPROX(m0, hm0.colwise().hnormalized());
|
|
hm0.row(Size-1).setRandom();
|
|
for(int j=0; j<Size; ++j)
|
|
m0.col(j) = hm0.col(j).start(Size) / hm0(Size,j);
|
|
VERIFY_IS_APPROX(m0, hm0.colwise().hnormalized());
|
|
|
|
T1MatrixType t1 = T1MatrixType::Random();
|
|
VERIFY_IS_APPROX(t1 * (v0.homogeneous().eval()), t1 * v0.homogeneous());
|
|
VERIFY_IS_APPROX(t1 * (m0.colwise().homogeneous().eval()), t1 * m0.colwise().homogeneous());
|
|
|
|
T2MatrixType t2 = T2MatrixType::Random();
|
|
VERIFY_IS_APPROX(t2 * (v0.homogeneous().eval()), t2 * v0.homogeneous());
|
|
VERIFY_IS_APPROX(t2 * (m0.colwise().homogeneous().eval()), t2 * m0.colwise().homogeneous());
|
|
|
|
VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t2,
|
|
v0.transpose().rowwise().homogeneous() * t2);
|
|
VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t2,
|
|
m0.transpose().rowwise().homogeneous() * t2);
|
|
|
|
T3MatrixType t3 = T3MatrixType::Random();
|
|
VERIFY_IS_APPROX((v0.transpose().rowwise().homogeneous().eval()) * t3,
|
|
v0.transpose().rowwise().homogeneous() * t3);
|
|
VERIFY_IS_APPROX((m0.transpose().rowwise().homogeneous().eval()) * t3,
|
|
m0.transpose().rowwise().homogeneous() * t3);
|
|
|
|
// test product with a Transform object
|
|
Transform<Scalar, Size, Affine> Rt;
|
|
Matrix<Scalar, Size, Dynamic> pts, Rt_pts1;
|
|
|
|
Rt.setIdentity();
|
|
pts.setRandom(Size,5);
|
|
|
|
Rt_pts1 = Rt * pts.colwise().homogeneous();
|
|
// std::cerr << (Rt_pts1 - pts).sum() << "\n";
|
|
VERIFY_IS_MUCH_SMALLER_THAN( (Rt_pts1 - pts).sum(), Scalar(1));
|
|
}
|
|
|
|
void test_geo_homogeneous()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1(( homogeneous<float,1>() ));
|
|
CALL_SUBTEST_2(( homogeneous<double,3>() ));
|
|
CALL_SUBTEST_3(( homogeneous<double,8>() ));
|
|
}
|
|
}
|