2
0
mirror of https://gitlab.com/libeigen/eigen.git synced 2025-01-12 14:25:16 +08:00
eigen/test/unalignedassert.cpp
Gael Guennebaud 82f0ce2726 Get rid of EIGEN_TEST_FUNC, unit tests must now be declared with EIGEN_DECLARE_TEST(mytest) { /* code */ }.
This provide several advantages:
- more flexibility in designing unit tests
- unit tests can be glued to speed up compilation
- unit tests are compiled with same predefined macros, which is a requirement for zapcc
2018-07-17 14:46:15 +02:00

181 lines
5.7 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#if defined(EIGEN_TEST_PART_1)
// default
#elif defined(EIGEN_TEST_PART_2)
#define EIGEN_MAX_STATIC_ALIGN_BYTES 16
#define EIGEN_MAX_ALIGN_BYTES 16
#elif defined(EIGEN_TEST_PART_3)
#define EIGEN_MAX_STATIC_ALIGN_BYTES 32
#define EIGEN_MAX_ALIGN_BYTES 32
#elif defined(EIGEN_TEST_PART_4)
#define EIGEN_MAX_STATIC_ALIGN_BYTES 64
#define EIGEN_MAX_ALIGN_BYTES 64
#endif
#include "main.h"
typedef Matrix<float, 6,1> Vector6f;
typedef Matrix<float, 8,1> Vector8f;
typedef Matrix<float, 12,1> Vector12f;
typedef Matrix<double, 5,1> Vector5d;
typedef Matrix<double, 6,1> Vector6d;
typedef Matrix<double, 7,1> Vector7d;
typedef Matrix<double, 8,1> Vector8d;
typedef Matrix<double, 9,1> Vector9d;
typedef Matrix<double,10,1> Vector10d;
typedef Matrix<double,12,1> Vector12d;
struct TestNew1
{
MatrixXd m; // good: m will allocate its own array, taking care of alignment.
TestNew1() : m(20,20) {}
};
struct TestNew2
{
Matrix3d m; // good: m's size isn't a multiple of 16 bytes, so m doesn't have to be 16-byte aligned,
// 8-byte alignment is good enough here, which we'll get automatically
};
struct TestNew3
{
Vector2f m; // good: m's size isn't a multiple of 16 bytes, so m doesn't have to be 16-byte aligned
};
struct TestNew4
{
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
Vector2d m;
float f; // make the struct have sizeof%16!=0 to make it a little more tricky when we allow an array of 2 such objects
};
struct TestNew5
{
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
float f; // try the f at first -- the EIGEN_ALIGN_MAX attribute of m should make that still work
Matrix4f m;
};
struct TestNew6
{
Matrix<float,2,2,DontAlign> m; // good: no alignment requested
float f;
};
template<bool Align> struct Depends
{
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(Align)
Vector2d m;
float f;
};
template<typename T>
void check_unalignedassert_good()
{
T *x, *y;
x = new T;
delete x;
y = new T[2];
delete[] y;
}
#if EIGEN_MAX_STATIC_ALIGN_BYTES>0
template<typename T>
void construct_at_boundary(int boundary)
{
char buf[sizeof(T)+256];
size_t _buf = reinterpret_cast<internal::UIntPtr>(buf);
_buf += (EIGEN_MAX_ALIGN_BYTES - (_buf % EIGEN_MAX_ALIGN_BYTES)); // make 16/32/...-byte aligned
_buf += boundary; // make exact boundary-aligned
T *x = ::new(reinterpret_cast<void*>(_buf)) T;
x[0].setZero(); // just in order to silence warnings
x->~T();
}
#endif
void unalignedassert()
{
#if EIGEN_MAX_STATIC_ALIGN_BYTES>0
construct_at_boundary<Vector2f>(4);
construct_at_boundary<Vector3f>(4);
construct_at_boundary<Vector4f>(16);
construct_at_boundary<Vector6f>(4);
construct_at_boundary<Vector8f>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector12f>(16);
construct_at_boundary<Matrix2f>(16);
construct_at_boundary<Matrix3f>(4);
construct_at_boundary<Matrix4f>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector2d>(16);
construct_at_boundary<Vector3d>(4);
construct_at_boundary<Vector4d>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector5d>(4);
construct_at_boundary<Vector6d>(16);
construct_at_boundary<Vector7d>(4);
construct_at_boundary<Vector8d>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector9d>(4);
construct_at_boundary<Vector10d>(16);
construct_at_boundary<Vector12d>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Matrix2d>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Matrix3d>(4);
construct_at_boundary<Matrix4d>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector2cf>(16);
construct_at_boundary<Vector3cf>(4);
construct_at_boundary<Vector2cd>(EIGEN_MAX_ALIGN_BYTES);
construct_at_boundary<Vector3cd>(16);
#endif
check_unalignedassert_good<TestNew1>();
check_unalignedassert_good<TestNew2>();
check_unalignedassert_good<TestNew3>();
check_unalignedassert_good<TestNew4>();
check_unalignedassert_good<TestNew5>();
check_unalignedassert_good<TestNew6>();
check_unalignedassert_good<Depends<true> >();
#if EIGEN_MAX_STATIC_ALIGN_BYTES>0
if(EIGEN_MAX_ALIGN_BYTES>=16)
{
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4f>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector8f>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector12f>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector2d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector6d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector8d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector10d>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector12d>(8));
// Complexes are disabled because the compiler might aggressively vectorize
// the initialization of complex coeffs to 0 before we can check for alignedness
//VERIFY_RAISES_ASSERT(construct_at_boundary<Vector2cf>(8));
VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4i>(8));
}
for(int b=8; b<EIGEN_MAX_ALIGN_BYTES; b+=8)
{
if(b<32) VERIFY_RAISES_ASSERT(construct_at_boundary<Vector8f>(b));
if(b<64) VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix4f>(b));
if(b<32) VERIFY_RAISES_ASSERT(construct_at_boundary<Vector4d>(b));
if(b<32) VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix2d>(b));
if(b<128) VERIFY_RAISES_ASSERT(construct_at_boundary<Matrix4d>(b));
//if(b<32) VERIFY_RAISES_ASSERT(construct_at_boundary<Vector2cd>(b));
}
#endif
}
EIGEN_DECLARE_TEST(unalignedassert)
{
CALL_SUBTEST(unalignedassert());
}