mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
767424af18
Added a functor to encapsulate the generation of random numbers on cpu and gpu.
181 lines
4.6 KiB
C++
181 lines
4.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
#include <limits>
|
|
#include <Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::Tensor;
|
|
|
|
static void test_simple_reductions()
|
|
{
|
|
Tensor<float, 4> tensor(2,3,5,7);
|
|
tensor.setRandom();
|
|
array<ptrdiff_t, 2> reduction_axis;
|
|
reduction_axis[0] = 1;
|
|
reduction_axis[1] = 3;
|
|
|
|
Tensor<float, 2> result = tensor.sum(reduction_axis);
|
|
VERIFY_IS_EQUAL(result.dimension(0), 2);
|
|
VERIFY_IS_EQUAL(result.dimension(1), 5);
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 5; ++j) {
|
|
float sum = 0.0f;
|
|
for (int k = 0; k < 3; ++k) {
|
|
for (int l = 0; l < 7; ++l) {
|
|
sum += tensor(i, k, j, l);
|
|
}
|
|
}
|
|
VERIFY_IS_APPROX(result(i, j), sum);
|
|
}
|
|
}
|
|
|
|
reduction_axis[0] = 0;
|
|
reduction_axis[1] = 2;
|
|
result = tensor.maximum(reduction_axis);
|
|
VERIFY_IS_EQUAL(result.dimension(0), 3);
|
|
VERIFY_IS_EQUAL(result.dimension(1), 7);
|
|
for (int i = 0; i < 3; ++i) {
|
|
for (int j = 0; j < 7; ++j) {
|
|
float max_val = std::numeric_limits<float>::lowest();
|
|
for (int k = 0; k < 2; ++k) {
|
|
for (int l = 0; l < 5; ++l) {
|
|
max_val = (std::max)(max_val, tensor(k, i, l, j));
|
|
}
|
|
}
|
|
VERIFY_IS_APPROX(result(i, j), max_val);
|
|
}
|
|
}
|
|
|
|
reduction_axis[0] = 0;
|
|
reduction_axis[1] = 1;
|
|
result = tensor.minimum(reduction_axis);
|
|
VERIFY_IS_EQUAL(result.dimension(0), 5);
|
|
VERIFY_IS_EQUAL(result.dimension(1), 7);
|
|
for (int i = 0; i < 5; ++i) {
|
|
for (int j = 0; j < 7; ++j) {
|
|
float min_val = (std::numeric_limits<float>::max)();
|
|
for (int k = 0; k < 2; ++k) {
|
|
for (int l = 0; l < 3; ++l) {
|
|
min_val = (std::min)(min_val, tensor(k, l, i, j));
|
|
}
|
|
}
|
|
VERIFY_IS_APPROX(result(i, j), min_val);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void test_full_reductions()
|
|
{
|
|
Tensor<float, 2> tensor(2,3);
|
|
tensor.setRandom();
|
|
array<ptrdiff_t, 2> reduction_axis;
|
|
reduction_axis[0] = 0;
|
|
reduction_axis[1] = 1;
|
|
|
|
Tensor<float, 1> result = tensor.sum(reduction_axis);
|
|
VERIFY_IS_EQUAL(result.dimension(0), 1);
|
|
|
|
float sum = 0.0f;
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
sum += tensor(i, j);
|
|
}
|
|
}
|
|
VERIFY_IS_APPROX(result(0), sum);
|
|
|
|
result = tensor.square().sum(reduction_axis).sqrt();
|
|
VERIFY_IS_EQUAL(result.dimension(0), 1);
|
|
|
|
sum = 0.0f;
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
sum += tensor(i, j) * tensor(i, j);
|
|
}
|
|
}
|
|
VERIFY_IS_APPROX(result(0), sqrtf(sum));
|
|
}
|
|
|
|
|
|
struct UserReducer {
|
|
UserReducer(float offset) : offset_(offset), sum_(0.0f) {}
|
|
void reduce(const float val) {
|
|
sum_ += val * val;
|
|
}
|
|
float finalize() const {
|
|
return 1.0f / (sum_ + offset_);
|
|
}
|
|
|
|
private:
|
|
float offset_;
|
|
float sum_;
|
|
};
|
|
|
|
static void test_user_defined_reductions()
|
|
{
|
|
Tensor<float, 2> tensor(5,7);
|
|
tensor.setRandom();
|
|
array<ptrdiff_t, 1> reduction_axis;
|
|
reduction_axis[0] = 1;
|
|
|
|
UserReducer reducer(10.0f);
|
|
Tensor<float, 1> result = tensor.reduce(reduction_axis, reducer);
|
|
VERIFY_IS_EQUAL(result.dimension(0), 5);
|
|
for (int i = 0; i < 5; ++i) {
|
|
float expected = 10.0f;
|
|
for (int j = 0; j < 7; ++j) {
|
|
expected += tensor(i, j) * tensor(i, j);
|
|
}
|
|
expected = 1.0f / expected;
|
|
VERIFY_IS_APPROX(result(i), expected);
|
|
}
|
|
}
|
|
|
|
|
|
static void test_tensor_maps()
|
|
{
|
|
int inputs[2*3*5*7];
|
|
TensorMap<Tensor<int, 4> > tensor_map(inputs, 2,3,5,7);
|
|
TensorMap<Tensor<const int, 4> > tensor_map_const(inputs, 2,3,5,7);
|
|
const TensorMap<Tensor<const int, 4> > tensor_map_const_const(inputs, 2,3,5,7);
|
|
|
|
tensor_map.setRandom();
|
|
array<ptrdiff_t, 2> reduction_axis;
|
|
reduction_axis[0] = 1;
|
|
reduction_axis[1] = 3;
|
|
|
|
Tensor<int, 2> result = tensor_map.sum(reduction_axis);
|
|
Tensor<int, 2> result2 = tensor_map_const.sum(reduction_axis);
|
|
Tensor<int, 2> result3 = tensor_map_const_const.sum(reduction_axis);
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 5; ++j) {
|
|
int sum = 0;
|
|
for (int k = 0; k < 3; ++k) {
|
|
for (int l = 0; l < 7; ++l) {
|
|
sum += tensor_map(i, k, j, l);
|
|
}
|
|
}
|
|
VERIFY_IS_EQUAL(result(i, j), sum);
|
|
VERIFY_IS_EQUAL(result2(i, j), sum);
|
|
VERIFY_IS_EQUAL(result3(i, j), sum);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void test_cxx11_tensor_reduction()
|
|
{
|
|
CALL_SUBTEST(test_simple_reductions());
|
|
CALL_SUBTEST(test_full_reductions());
|
|
CALL_SUBTEST(test_user_defined_reductions());
|
|
CALL_SUBTEST(test_tensor_maps());
|
|
}
|