mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
143 lines
3.4 KiB
C++
143 lines
3.4 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
#include <string>
|
|
#include <Eigen/CXX11/Tensor>
|
|
|
|
using std::string;
|
|
using Eigen::Tensor;
|
|
using Eigen::TensorMap;
|
|
|
|
static void test_assign()
|
|
{
|
|
string data1[6];
|
|
TensorMap<Tensor<string, 2>> mat1(data1, 2, 3);
|
|
string data2[6];
|
|
const TensorMap<Tensor<const string, 2>> mat2(data2, 2, 3);
|
|
|
|
for (int i = 0; i < 6; ++i) {
|
|
std::ostringstream s1;
|
|
s1 << "abc" << i*3;
|
|
data1[i] = s1.str();
|
|
std::ostringstream s2;
|
|
s2 << "def" << i*5;
|
|
data2[i] = s2.str();
|
|
}
|
|
|
|
Tensor<string, 2> rslt1;
|
|
rslt1 = mat1;
|
|
Tensor<string, 2> rslt2;
|
|
rslt2 = mat2;
|
|
|
|
Tensor<string, 2> rslt3 = mat1;
|
|
Tensor<string, 2> rslt4 = mat2;
|
|
|
|
Tensor<string, 2> rslt5(mat1);
|
|
Tensor<string, 2> rslt6(mat2);
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
VERIFY_IS_EQUAL(rslt1(i,j), data1[i+2*j]);
|
|
VERIFY_IS_EQUAL(rslt2(i,j), data2[i+2*j]);
|
|
VERIFY_IS_EQUAL(rslt3(i,j), data1[i+2*j]);
|
|
VERIFY_IS_EQUAL(rslt4(i,j), data2[i+2*j]);
|
|
VERIFY_IS_EQUAL(rslt5(i,j), data1[i+2*j]);
|
|
VERIFY_IS_EQUAL(rslt6(i,j), data2[i+2*j]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void test_concat()
|
|
{
|
|
Tensor<string, 2> t1(2, 3);
|
|
Tensor<string, 2> t2(2, 3);
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
std::ostringstream s1;
|
|
s1 << "abc" << i + j*2;
|
|
t1(i, j) = s1.str();
|
|
std::ostringstream s2;
|
|
s2 << "def" << i*5 + j*32;
|
|
t2(i, j) = s2.str();
|
|
}
|
|
}
|
|
|
|
Tensor<string, 2> result = t1.concatenate(t2, 1);
|
|
VERIFY_IS_EQUAL(result.dimension(0), 2);
|
|
VERIFY_IS_EQUAL(result.dimension(1), 6);
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
VERIFY_IS_EQUAL(result(i, j), t1(i, j));
|
|
VERIFY_IS_EQUAL(result(i, j+3), t2(i, j));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void test_slices()
|
|
{
|
|
Tensor<string, 2> data(2, 6);
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
std::ostringstream s1;
|
|
s1 << "abc" << i + j*2;
|
|
data(i, j) = s1.str();
|
|
}
|
|
}
|
|
|
|
const Eigen::DSizes<ptrdiff_t, 2> half_size{{2, 3}};
|
|
const Eigen::DSizes<ptrdiff_t, 2> first_half{{0, 0}};
|
|
const Eigen::DSizes<ptrdiff_t, 2> second_half{{0, 3}};
|
|
|
|
Tensor<string, 2> t1 = data.slice(first_half, half_size);
|
|
Tensor<string, 2> t2 = data.slice(second_half, half_size);
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
VERIFY_IS_EQUAL(data(i, j), t1(i, j));
|
|
VERIFY_IS_EQUAL(data(i, j+3), t2(i, j));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void test_additions()
|
|
{
|
|
Tensor<string, 1> data1(3);
|
|
Tensor<string, 1> data2(3);
|
|
for (int i = 0; i < 3; ++i) {
|
|
data1(i) = "abc";
|
|
std::ostringstream s1;
|
|
s1 << i;
|
|
data2(i) = s1.str();
|
|
}
|
|
|
|
Tensor<string, 1> sum = data1 + data2;
|
|
for (int i = 0; i < 3; ++i) {
|
|
std::ostringstream concat;
|
|
concat << "abc" << i;
|
|
string expected = concat.str();
|
|
VERIFY_IS_EQUAL(sum(i), expected);
|
|
}
|
|
}
|
|
|
|
|
|
void test_cxx11_tensor_of_strings()
|
|
{
|
|
// Beware: none of this is likely to ever work on a GPU.
|
|
CALL_SUBTEST(test_assign());
|
|
CALL_SUBTEST(test_concat());
|
|
CALL_SUBTEST(test_slices());
|
|
CALL_SUBTEST(test_additions());
|
|
}
|