mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
72 lines
2.6 KiB
C++
72 lines
2.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
#include <Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::Tensor;
|
|
using Eigen::DefaultDevice;
|
|
|
|
static void test_evals()
|
|
{
|
|
Tensor<float, 2> input(3, 3);
|
|
Tensor<float, 1> kernel(2);
|
|
|
|
input.setRandom();
|
|
kernel.setRandom();
|
|
|
|
Tensor<float, 2> result(2,3);
|
|
result.setZero();
|
|
Eigen::array<Tensor<float, 2>::Index, 1> dims3({0});
|
|
|
|
typedef TensorEvaluator<decltype(input.convolve(kernel, dims3)), DefaultDevice> Evaluator;
|
|
Evaluator eval(input.convolve(kernel, dims3), DefaultDevice());
|
|
eval.evalTo(result.data());
|
|
EIGEN_STATIC_ASSERT(Evaluator::NumDims==2ul, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
|
VERIFY_IS_EQUAL(eval.dimensions()[0], 2);
|
|
VERIFY_IS_EQUAL(eval.dimensions()[1], 3);
|
|
|
|
VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0) + input(1,0)*kernel(1)); // index 0
|
|
VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0) + input(1,1)*kernel(1)); // index 2
|
|
VERIFY_IS_APPROX(result(0,2), input(0,2)*kernel(0) + input(1,2)*kernel(1)); // index 4
|
|
VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0) + input(2,0)*kernel(1)); // index 1
|
|
VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0) + input(2,1)*kernel(1)); // index 3
|
|
VERIFY_IS_APPROX(result(1,2), input(1,2)*kernel(0) + input(2,2)*kernel(1)); // index 5
|
|
}
|
|
|
|
|
|
static void test_expr()
|
|
{
|
|
Tensor<float, 2> input(3, 3);
|
|
Tensor<float, 2> kernel(2, 2);
|
|
input.setRandom();
|
|
kernel.setRandom();
|
|
|
|
Tensor<float, 2> result(2,2);
|
|
Eigen::array<ptrdiff_t, 2> dims({0, 1});
|
|
result = input.convolve(kernel, dims);
|
|
|
|
VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0,0) + input(0,1)*kernel(0,1) +
|
|
input(1,0)*kernel(1,0) + input(1,1)*kernel(1,1));
|
|
VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0,0) + input(0,2)*kernel(0,1) +
|
|
input(1,1)*kernel(1,0) + input(1,2)*kernel(1,1));
|
|
VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0,0) + input(1,1)*kernel(0,1) +
|
|
input(2,0)*kernel(1,0) + input(2,1)*kernel(1,1));
|
|
VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0,0) + input(1,2)*kernel(0,1) +
|
|
input(2,1)*kernel(1,0) + input(2,2)*kernel(1,1));
|
|
}
|
|
|
|
|
|
void test_cxx11_tensor_convolution()
|
|
{
|
|
CALL_SUBTEST(test_evals());
|
|
CALL_SUBTEST(test_expr());
|
|
}
|