mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
0c5a09d93f
Just a thought: what about ParamLine instead of the verbose ParametrizedLine ?
133 lines
2.9 KiB
C++
133 lines
2.9 KiB
C++
|
|
// g++ -I.. sparse_lu.cpp -O3 -g0 -I /usr/include/superlu/ -lsuperlu -lgfortran -DSIZE=1000 -DDENSITY=.05 && ./a.out
|
|
|
|
#define EIGEN_SUPERLU_SUPPORT
|
|
#define EIGEN_UMFPACK_SUPPORT
|
|
#include <Eigen/Sparse>
|
|
|
|
#define NOGMM
|
|
#define NOMTL
|
|
|
|
#ifndef SIZE
|
|
#define SIZE 10
|
|
#endif
|
|
|
|
#ifndef DENSITY
|
|
#define DENSITY 0.01
|
|
#endif
|
|
|
|
#ifndef REPEAT
|
|
#define REPEAT 1
|
|
#endif
|
|
|
|
#include "BenchSparseUtil.h"
|
|
|
|
#ifndef MINDENSITY
|
|
#define MINDENSITY 0.0004
|
|
#endif
|
|
|
|
#ifndef NBTRIES
|
|
#define NBTRIES 10
|
|
#endif
|
|
|
|
#define BENCH(X) \
|
|
timer.reset(); \
|
|
for (int _j=0; _j<NBTRIES; ++_j) { \
|
|
timer.start(); \
|
|
for (int _k=0; _k<REPEAT; ++_k) { \
|
|
X \
|
|
} timer.stop(); }
|
|
|
|
typedef Matrix<Scalar,Dynamic,1> VectorX;
|
|
|
|
#include <Eigen/LU>
|
|
|
|
template<int Backend>
|
|
void doEigen(const char* name, const EigenSparseMatrix& sm1, const VectorX& b, VectorX& x, int flags = 0)
|
|
{
|
|
std::cout << name << "..." << std::flush;
|
|
BenchTimer timer; timer.start();
|
|
SparseLU<EigenSparseMatrix,Backend> lu(sm1, flags);
|
|
timer.stop();
|
|
if (lu.succeeded())
|
|
std::cout << ":\t" << timer.value() << endl;
|
|
else
|
|
{
|
|
std::cout << ":\t FAILED" << endl;
|
|
return;
|
|
}
|
|
|
|
bool ok;
|
|
timer.reset(); timer.start();
|
|
ok = lu.solve(b,&x);
|
|
timer.stop();
|
|
if (ok)
|
|
std::cout << " solve:\t" << timer.value() << endl;
|
|
else
|
|
std::cout << " solve:\t" << " FAILED" << endl;
|
|
|
|
//std::cout << x.transpose() << "\n";
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
int rows = SIZE;
|
|
int cols = SIZE;
|
|
float density = DENSITY;
|
|
BenchTimer timer;
|
|
|
|
VectorX b = VectorX::Random(cols);
|
|
VectorX x = VectorX::Random(cols);
|
|
|
|
bool densedone = false;
|
|
|
|
//for (float density = DENSITY; density>=MINDENSITY; density*=0.5)
|
|
// float density = 0.5;
|
|
{
|
|
EigenSparseMatrix sm1(rows, cols);
|
|
fillMatrix(density, rows, cols, sm1);
|
|
|
|
// dense matrices
|
|
#ifdef DENSEMATRIX
|
|
if (!densedone)
|
|
{
|
|
densedone = true;
|
|
std::cout << "Eigen Dense\t" << density*100 << "%\n";
|
|
DenseMatrix m1(rows,cols);
|
|
eiToDense(sm1, m1);
|
|
|
|
BenchTimer timer;
|
|
timer.start();
|
|
LU<DenseMatrix> lu(m1);
|
|
timer.stop();
|
|
std::cout << "Eigen/dense:\t" << timer.value() << endl;
|
|
|
|
timer.reset();
|
|
timer.start();
|
|
lu.solve(b,&x);
|
|
timer.stop();
|
|
std::cout << " solve:\t" << timer.value() << endl;
|
|
// std::cout << b.transpose() << "\n";
|
|
// std::cout << x.transpose() << "\n";
|
|
}
|
|
#endif
|
|
|
|
#ifdef EIGEN_UMFPACK_SUPPORT
|
|
x.setZero();
|
|
doEigen<Eigen::UmfPack>("Eigen/UmfPack (auto)", sm1, b, x, 0);
|
|
#endif
|
|
|
|
#ifdef EIGEN_SUPERLU_SUPPORT
|
|
x.setZero();
|
|
doEigen<Eigen::SuperLU>("Eigen/SuperLU (nat)", sm1, b, x, Eigen::NaturalOrdering);
|
|
// doEigen<Eigen::SuperLU>("Eigen/SuperLU (MD AT+A)", sm1, b, x, Eigen::MinimumDegree_AT_PLUS_A);
|
|
// doEigen<Eigen::SuperLU>("Eigen/SuperLU (MD ATA)", sm1, b, x, Eigen::MinimumDegree_ATA);
|
|
doEigen<Eigen::SuperLU>("Eigen/SuperLU (COLAMD)", sm1, b, x, Eigen::ColApproxMinimumDegree);
|
|
#endif
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|