mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-12 14:25:16 +08:00
416 lines
17 KiB
C++
416 lines
17 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2012-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
// Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
// Copyright (C) 2016 Tobias Wood <tobias@spinicist.org.uk>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_GENERALIZEDEIGENSOLVER_H
|
|
#define EIGEN_GENERALIZEDEIGENSOLVER_H
|
|
|
|
#include "./RealQZ.h"
|
|
|
|
#include "./InternalHeaderCheck.h"
|
|
|
|
namespace Eigen {
|
|
|
|
/** \eigenvalues_module \ingroup Eigenvalues_Module
|
|
*
|
|
*
|
|
* \class GeneralizedEigenSolver
|
|
*
|
|
* \brief Computes the generalized eigenvalues and eigenvectors of a pair of general matrices
|
|
*
|
|
* \tparam MatrixType_ the type of the matrices of which we are computing the
|
|
* eigen-decomposition; this is expected to be an instantiation of the Matrix
|
|
* class template. Currently, only real matrices are supported.
|
|
*
|
|
* The generalized eigenvalues and eigenvectors of a matrix pair \f$ A \f$ and \f$ B \f$ are scalars
|
|
* \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda Bv \f$. If
|
|
* \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
|
|
* \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
|
|
* B V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
|
|
* have \f$ A = B V D V^{-1} \f$. This is called the generalized eigen-decomposition.
|
|
*
|
|
* The generalized eigenvalues and eigenvectors of a matrix pair may be complex, even when the
|
|
* matrices are real. Moreover, the generalized eigenvalue might be infinite if the matrix B is
|
|
* singular. To workaround this difficulty, the eigenvalues are provided as a pair of complex \f$ \alpha \f$
|
|
* and real \f$ \beta \f$ such that: \f$ \lambda_i = \alpha_i / \beta_i \f$. If \f$ \beta_i \f$ is (nearly) zero,
|
|
* then one can consider the well defined left eigenvalue \f$ \mu = \beta_i / \alpha_i\f$ such that:
|
|
* \f$ \mu_i A v_i = B v_i \f$, or even \f$ \mu_i u_i^T A = u_i^T B \f$ where \f$ u_i \f$ is
|
|
* called the left eigenvector.
|
|
*
|
|
* Call the function compute() to compute the generalized eigenvalues and eigenvectors of
|
|
* a given matrix pair. Alternatively, you can use the
|
|
* GeneralizedEigenSolver(const MatrixType&, const MatrixType&, bool) constructor which computes the
|
|
* eigenvalues and eigenvectors at construction time. Once the eigenvalue and
|
|
* eigenvectors are computed, they can be retrieved with the eigenvalues() and
|
|
* eigenvectors() functions.
|
|
*
|
|
* Here is an usage example of this class:
|
|
* Example: \include GeneralizedEigenSolver.cpp
|
|
* Output: \verbinclude GeneralizedEigenSolver.out
|
|
*
|
|
* \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
|
|
*/
|
|
template<typename MatrixType_> class GeneralizedEigenSolver
|
|
{
|
|
public:
|
|
|
|
/** \brief Synonym for the template parameter \p MatrixType_. */
|
|
typedef MatrixType_ MatrixType;
|
|
|
|
enum {
|
|
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
|
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
|
|
Options = MatrixType::Options,
|
|
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
|
|
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
|
|
};
|
|
|
|
/** \brief Scalar type for matrices of type #MatrixType. */
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
|
|
|
|
/** \brief Complex scalar type for #MatrixType.
|
|
*
|
|
* This is \c std::complex<Scalar> if #Scalar is real (e.g.,
|
|
* \c float or \c double) and just \c Scalar if #Scalar is
|
|
* complex.
|
|
*/
|
|
typedef std::complex<RealScalar> ComplexScalar;
|
|
|
|
/** \brief Type for vector of real scalar values eigenvalues as returned by betas().
|
|
*
|
|
* This is a column vector with entries of type #Scalar.
|
|
* The length of the vector is the size of #MatrixType.
|
|
*/
|
|
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> VectorType;
|
|
|
|
/** \brief Type for vector of complex scalar values eigenvalues as returned by alphas().
|
|
*
|
|
* This is a column vector with entries of type #ComplexScalar.
|
|
* The length of the vector is the size of #MatrixType.
|
|
*/
|
|
typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ComplexVectorType;
|
|
|
|
/** \brief Expression type for the eigenvalues as returned by eigenvalues().
|
|
*/
|
|
typedef CwiseBinaryOp<internal::scalar_quotient_op<ComplexScalar,Scalar>,ComplexVectorType,VectorType> EigenvalueType;
|
|
|
|
/** \brief Type for matrix of eigenvectors as returned by eigenvectors().
|
|
*
|
|
* This is a square matrix with entries of type #ComplexScalar.
|
|
* The size is the same as the size of #MatrixType.
|
|
*/
|
|
typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
|
|
|
|
/** \brief Default constructor.
|
|
*
|
|
* The default constructor is useful in cases in which the user intends to
|
|
* perform decompositions via EigenSolver::compute(const MatrixType&, bool).
|
|
*
|
|
* \sa compute() for an example.
|
|
*/
|
|
GeneralizedEigenSolver()
|
|
: m_eivec(),
|
|
m_alphas(),
|
|
m_betas(),
|
|
m_valuesOkay(false),
|
|
m_vectorsOkay(false),
|
|
m_realQZ()
|
|
{}
|
|
|
|
/** \brief Default constructor with memory preallocation
|
|
*
|
|
* Like the default constructor but with preallocation of the internal data
|
|
* according to the specified problem \a size.
|
|
* \sa GeneralizedEigenSolver()
|
|
*/
|
|
explicit GeneralizedEigenSolver(Index size)
|
|
: m_eivec(size, size),
|
|
m_alphas(size),
|
|
m_betas(size),
|
|
m_valuesOkay(false),
|
|
m_vectorsOkay(false),
|
|
m_realQZ(size),
|
|
m_tmp(size)
|
|
{}
|
|
|
|
/** \brief Constructor; computes the generalized eigendecomposition of given matrix pair.
|
|
*
|
|
* \param[in] A Square matrix whose eigendecomposition is to be computed.
|
|
* \param[in] B Square matrix whose eigendecomposition is to be computed.
|
|
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
|
* eigenvalues are computed; if false, only the eigenvalues are computed.
|
|
*
|
|
* This constructor calls compute() to compute the generalized eigenvalues
|
|
* and eigenvectors.
|
|
*
|
|
* \sa compute()
|
|
*/
|
|
GeneralizedEigenSolver(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true)
|
|
: m_eivec(A.rows(), A.cols()),
|
|
m_alphas(A.cols()),
|
|
m_betas(A.cols()),
|
|
m_valuesOkay(false),
|
|
m_vectorsOkay(false),
|
|
m_realQZ(A.cols()),
|
|
m_tmp(A.cols())
|
|
{
|
|
compute(A, B, computeEigenvectors);
|
|
}
|
|
|
|
/* \brief Returns the computed generalized eigenvectors.
|
|
*
|
|
* \returns %Matrix whose columns are the (possibly complex) right eigenvectors.
|
|
* i.e. the eigenvectors that solve (A - l*B)x = 0. The ordering matches the eigenvalues.
|
|
*
|
|
* \pre Either the constructor
|
|
* GeneralizedEigenSolver(const MatrixType&,const MatrixType&, bool) or the member function
|
|
* compute(const MatrixType&, const MatrixType& bool) has been called before, and
|
|
* \p computeEigenvectors was set to true (the default).
|
|
*
|
|
* \sa eigenvalues()
|
|
*/
|
|
EigenvectorsType eigenvectors() const {
|
|
eigen_assert(m_vectorsOkay && "Eigenvectors for GeneralizedEigenSolver were not calculated.");
|
|
return m_eivec;
|
|
}
|
|
|
|
/** \brief Returns an expression of the computed generalized eigenvalues.
|
|
*
|
|
* \returns An expression of the column vector containing the eigenvalues.
|
|
*
|
|
* It is a shortcut for \code this->alphas().cwiseQuotient(this->betas()); \endcode
|
|
* Not that betas might contain zeros. It is therefore not recommended to use this function,
|
|
* but rather directly deal with the alphas and betas vectors.
|
|
*
|
|
* \pre Either the constructor
|
|
* GeneralizedEigenSolver(const MatrixType&,const MatrixType&,bool) or the member function
|
|
* compute(const MatrixType&,const MatrixType&,bool) has been called before.
|
|
*
|
|
* The eigenvalues are repeated according to their algebraic multiplicity,
|
|
* so there are as many eigenvalues as rows in the matrix. The eigenvalues
|
|
* are not sorted in any particular order.
|
|
*
|
|
* \sa alphas(), betas(), eigenvectors()
|
|
*/
|
|
EigenvalueType eigenvalues() const
|
|
{
|
|
eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
|
|
return EigenvalueType(m_alphas,m_betas);
|
|
}
|
|
|
|
/** \returns A const reference to the vectors containing the alpha values
|
|
*
|
|
* This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
|
|
*
|
|
* \sa betas(), eigenvalues() */
|
|
ComplexVectorType alphas() const
|
|
{
|
|
eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
|
|
return m_alphas;
|
|
}
|
|
|
|
/** \returns A const reference to the vectors containing the beta values
|
|
*
|
|
* This vector permits to reconstruct the j-th eigenvalues as alphas(i)/betas(j).
|
|
*
|
|
* \sa alphas(), eigenvalues() */
|
|
VectorType betas() const
|
|
{
|
|
eigen_assert(m_valuesOkay && "GeneralizedEigenSolver is not initialized.");
|
|
return m_betas;
|
|
}
|
|
|
|
/** \brief Computes generalized eigendecomposition of given matrix.
|
|
*
|
|
* \param[in] A Square matrix whose eigendecomposition is to be computed.
|
|
* \param[in] B Square matrix whose eigendecomposition is to be computed.
|
|
* \param[in] computeEigenvectors If true, both the eigenvectors and the
|
|
* eigenvalues are computed; if false, only the eigenvalues are
|
|
* computed.
|
|
* \returns Reference to \c *this
|
|
*
|
|
* This function computes the eigenvalues of the real matrix \p matrix.
|
|
* The eigenvalues() function can be used to retrieve them. If
|
|
* \p computeEigenvectors is true, then the eigenvectors are also computed
|
|
* and can be retrieved by calling eigenvectors().
|
|
*
|
|
* The matrix is first reduced to real generalized Schur form using the RealQZ
|
|
* class. The generalized Schur decomposition is then used to compute the eigenvalues
|
|
* and eigenvectors.
|
|
*
|
|
* The cost of the computation is dominated by the cost of the
|
|
* generalized Schur decomposition.
|
|
*
|
|
* This method reuses of the allocated data in the GeneralizedEigenSolver object.
|
|
*/
|
|
GeneralizedEigenSolver& compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors = true);
|
|
|
|
ComputationInfo info() const
|
|
{
|
|
eigen_assert(m_valuesOkay && "EigenSolver is not initialized.");
|
|
return m_realQZ.info();
|
|
}
|
|
|
|
/** Sets the maximal number of iterations allowed.
|
|
*/
|
|
GeneralizedEigenSolver& setMaxIterations(Index maxIters)
|
|
{
|
|
m_realQZ.setMaxIterations(maxIters);
|
|
return *this;
|
|
}
|
|
|
|
protected:
|
|
|
|
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
|
|
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
|
|
|
|
EigenvectorsType m_eivec;
|
|
ComplexVectorType m_alphas;
|
|
VectorType m_betas;
|
|
bool m_valuesOkay, m_vectorsOkay;
|
|
RealQZ<MatrixType> m_realQZ;
|
|
ComplexVectorType m_tmp;
|
|
};
|
|
|
|
template<typename MatrixType>
|
|
GeneralizedEigenSolver<MatrixType>&
|
|
GeneralizedEigenSolver<MatrixType>::compute(const MatrixType& A, const MatrixType& B, bool computeEigenvectors)
|
|
{
|
|
using std::sqrt;
|
|
using std::abs;
|
|
eigen_assert(A.cols() == A.rows() && B.cols() == A.rows() && B.cols() == B.rows());
|
|
Index size = A.cols();
|
|
m_valuesOkay = false;
|
|
m_vectorsOkay = false;
|
|
// Reduce to generalized real Schur form:
|
|
// A = Q S Z and B = Q T Z
|
|
m_realQZ.compute(A, B, computeEigenvectors);
|
|
if (m_realQZ.info() == Success)
|
|
{
|
|
// Resize storage
|
|
m_alphas.resize(size);
|
|
m_betas.resize(size);
|
|
if (computeEigenvectors)
|
|
{
|
|
m_eivec.resize(size,size);
|
|
m_tmp.resize(size);
|
|
}
|
|
|
|
// Aliases:
|
|
Map<VectorType> v(reinterpret_cast<Scalar*>(m_tmp.data()), size);
|
|
ComplexVectorType &cv = m_tmp;
|
|
const MatrixType &mS = m_realQZ.matrixS();
|
|
const MatrixType &mT = m_realQZ.matrixT();
|
|
|
|
Index i = 0;
|
|
while (i < size)
|
|
{
|
|
if (i == size - 1 || mS.coeff(i+1, i) == Scalar(0))
|
|
{
|
|
// Real eigenvalue
|
|
m_alphas.coeffRef(i) = mS.diagonal().coeff(i);
|
|
m_betas.coeffRef(i) = mT.diagonal().coeff(i);
|
|
if (computeEigenvectors)
|
|
{
|
|
v.setConstant(Scalar(0.0));
|
|
v.coeffRef(i) = Scalar(1.0);
|
|
// For singular eigenvalues do nothing more
|
|
if(abs(m_betas.coeffRef(i)) >= (std::numeric_limits<RealScalar>::min)())
|
|
{
|
|
// Non-singular eigenvalue
|
|
const Scalar alpha = real(m_alphas.coeffRef(i));
|
|
const Scalar beta = m_betas.coeffRef(i);
|
|
for (Index j = i-1; j >= 0; j--)
|
|
{
|
|
const Index st = j+1;
|
|
const Index sz = i-j;
|
|
if (j > 0 && mS.coeff(j, j-1) != Scalar(0))
|
|
{
|
|
// 2x2 block
|
|
Matrix<Scalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( v.segment(st,sz) );
|
|
Matrix<Scalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1);
|
|
v.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs);
|
|
j--;
|
|
}
|
|
else
|
|
{
|
|
v.coeffRef(j) = -v.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum() / (beta*mS.coeffRef(j,j) - alpha*mT.coeffRef(j,j));
|
|
}
|
|
}
|
|
}
|
|
m_eivec.col(i).real().noalias() = m_realQZ.matrixZ().transpose() * v;
|
|
m_eivec.col(i).real().normalize();
|
|
m_eivec.col(i).imag().setConstant(0);
|
|
}
|
|
++i;
|
|
}
|
|
else
|
|
{
|
|
// We need to extract the generalized eigenvalues of the pair of a general 2x2 block S and a positive diagonal 2x2 block T
|
|
// Then taking beta=T_00*T_11, we can avoid any division, and alpha is the eigenvalues of A = (U^-1 * S * U) * diag(T_11,T_00):
|
|
|
|
// T = [a 0]
|
|
// [0 b]
|
|
RealScalar a = mT.diagonal().coeff(i),
|
|
b = mT.diagonal().coeff(i+1);
|
|
const RealScalar beta = m_betas.coeffRef(i) = m_betas.coeffRef(i+1) = a*b;
|
|
|
|
// ^^ NOTE: using diagonal()(i) instead of coeff(i,i) workarounds a MSVC bug.
|
|
Matrix<RealScalar,2,2> S2 = mS.template block<2,2>(i,i) * Matrix<Scalar,2,1>(b,a).asDiagonal();
|
|
|
|
Scalar p = Scalar(0.5) * (S2.coeff(0,0) - S2.coeff(1,1));
|
|
Scalar z = sqrt(abs(p * p + S2.coeff(1,0) * S2.coeff(0,1)));
|
|
const ComplexScalar alpha = ComplexScalar(S2.coeff(1,1) + p, (beta > 0) ? z : -z);
|
|
m_alphas.coeffRef(i) = conj(alpha);
|
|
m_alphas.coeffRef(i+1) = alpha;
|
|
|
|
if (computeEigenvectors) {
|
|
// Compute eigenvector in position (i+1) and then position (i) is just the conjugate
|
|
cv.setZero();
|
|
cv.coeffRef(i+1) = Scalar(1.0);
|
|
// here, the "static_cast" workaound expression template issues.
|
|
cv.coeffRef(i) = -(static_cast<Scalar>(beta*mS.coeffRef(i,i+1)) - alpha*mT.coeffRef(i,i+1))
|
|
/ (static_cast<Scalar>(beta*mS.coeffRef(i,i)) - alpha*mT.coeffRef(i,i));
|
|
for (Index j = i-1; j >= 0; j--)
|
|
{
|
|
const Index st = j+1;
|
|
const Index sz = i+1-j;
|
|
if (j > 0 && mS.coeff(j, j-1) != Scalar(0))
|
|
{
|
|
// 2x2 block
|
|
Matrix<ComplexScalar, 2, 1> rhs = (alpha*mT.template block<2,Dynamic>(j-1,st,2,sz) - beta*mS.template block<2,Dynamic>(j-1,st,2,sz)) .lazyProduct( cv.segment(st,sz) );
|
|
Matrix<ComplexScalar, 2, 2> lhs = beta * mS.template block<2,2>(j-1,j-1) - alpha * mT.template block<2,2>(j-1,j-1);
|
|
cv.template segment<2>(j-1) = lhs.partialPivLu().solve(rhs);
|
|
j--;
|
|
} else {
|
|
cv.coeffRef(j) = cv.segment(st,sz).transpose().cwiseProduct(beta*mS.block(j,st,1,sz) - alpha*mT.block(j,st,1,sz)).sum()
|
|
/ (alpha*mT.coeffRef(j,j) - static_cast<Scalar>(beta*mS.coeffRef(j,j)));
|
|
}
|
|
}
|
|
m_eivec.col(i+1).noalias() = (m_realQZ.matrixZ().transpose() * cv);
|
|
m_eivec.col(i+1).normalize();
|
|
m_eivec.col(i) = m_eivec.col(i+1).conjugate();
|
|
}
|
|
i += 2;
|
|
}
|
|
}
|
|
|
|
m_valuesOkay = true;
|
|
m_vectorsOkay = computeEigenvectors;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_GENERALIZEDEIGENSOLVER_H
|