eigen/bench/tensors/tensor_contract_sycl_bench.cc
Antonio Sanchez 1e6c6c1576 Replace memset with fill to work for non-trivial scalars.
For custom scalars, zero is not necessarily represented by
a zeroed-out memory block (e.g. gnu MPFR). We therefore
cannot rely on `memset` if we want to fill a matrix or tensor
with zeroes. Instead, we should rely on `fill`, which for trivial
types does end up getting converted to a `memset` under-the-hood
(at least with gcc/clang).

Requires adding a `fill(begin, end, v)` to `TensorDevice`.

Replaced all potentially bad instances of memset with fill.

Fixes #2245.
2021-07-08 18:34:41 +00:00

326 lines
11 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2016
// Mehdi Goli Codeplay Software Ltd.
// Ralph Potter Codeplay Software Ltd.
// Luke Iwanski Codeplay Software Ltd.
// Contact: <eigen@codeplay.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_BENCH_CONTRACT_SYCL
#define EIGEN_BENCH_CONTRACT_SYCL
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
#include <SYCL/sycl.hpp>
#include <fstream>
#include <iostream>
#include <chrono>
#include <ctime>
#include <unsupported/Eigen/CXX11/Tensor>
using Eigen::array;
using Eigen::SyclDevice;
using Eigen::Tensor;
using Eigen::TensorMap;
std::ofstream out("Result.txt");
std::chrono::time_point<std::chrono::system_clock> get_time(){
std::chrono::time_point<std::chrono::system_clock> start, end;
return std::chrono::system_clock::now();
}
template<typename Start, typename End, typename TensorIndex>
void finalizeBenchmark(Start start, End end, TensorIndex m_, TensorIndex k_, TensorIndex n_ , TensorIndex num_iters, std::string name){
std::chrono::duration<double> elapsed_seconds = end-start;
std::cout <<"Kernel Name : " << name << ", M : " << m_ << ", N : " << n_ << ", K : " << k_ << " GFLOP/s : " <<
static_cast<float>((static_cast<int64_t>(2) * m_ * n_ * k_ * num_iters)/ elapsed_seconds.count()) * 1e-9 << "\n";
out <<"Kernel Name : " << name << ", M : " << m_ << ", N : " << n_ << ", K : " << k_ << " GFLOP/s : " <<
static_cast<float>((static_cast<int64_t>(2) * m_ * n_ * k_ * num_iters)/ elapsed_seconds.count()) * 1e-9 << "\n";
}
// do a contraction which is equivalent to a matrix multiplication
template<typename T, typename Device, typename TensorIndex>
void contraction(const Device& device_, TensorIndex num_iters, TensorIndex m_, TensorIndex k_, TensorIndex n_) {
T* a_;
T* b_;
T* c_;
a_ = (T *) device_.allocate(m_ * k_ * sizeof(T));
b_ = (T *) device_.allocate(k_ * n_ * sizeof(T));
c_ = (T *) device_.allocate(m_ * n_ * sizeof(T));
// Initialize the content of the memory pools to prevent asan from
// complaining.
device_.fill(a_, m_ * k_, T(12));
device_.fill(b_, k_ * n_, T(23));
device_.fill(c_, m_ * n_, T(31));
Eigen::array<TensorIndex, 2> sizeA;
sizeA[0] = m_;
sizeA[1] = k_;
Eigen::array<TensorIndex, 2> sizeB;
sizeB[0] = k_;
sizeB[1] = n_;
Eigen::array<TensorIndex, 2> sizeC;
sizeC[0] = m_;
sizeC[1] = n_;
const TensorMap<Tensor<T, 2>, Eigen::Aligned> A(a_, sizeA);
const TensorMap<Tensor<T, 2>, Eigen::Aligned> B(b_, sizeB);
TensorMap<Tensor<T, 2>, Eigen::Aligned> C(c_, sizeC);
typedef typename Tensor<T, 2>::DimensionPair DimPair;
Eigen::array<DimPair, 1> dims;
dims[0] = DimPair(1, 0);
#ifdef EIGEN_USE_SYCL // warmup for sycl
for (int iter = 0; iter < 10; ++iter) {
C.device(device_) = A.contract(B, dims);
}
#endif
auto start = get_time();
for (int iter = 0; iter < num_iters; ++iter) {
C.device(device_) = A.contract(B, dims);
}
auto end = get_time();
// Record the number of FLOPs executed per second (size_ multiplications and
// additions for each value in the resulting tensor)
finalizeBenchmark(start, end, m_, k_, n_, num_iters, "contraction");
device_.deallocate(a_);
device_.deallocate(b_);
device_.deallocate(c_);
device_.synchronize();
}
// do a contraction which is equivalent to a matrix multiplication
template<typename T, typename Device, typename TensorIndex>
void contractionRowMajor(const Device& device_, TensorIndex num_iters, TensorIndex m_, TensorIndex k_, TensorIndex n_) {
T* a_;
T* b_;
T* c_;
a_ = (T *) device_.allocate(m_ * k_ * sizeof(T));
b_ = (T *) device_.allocate(k_ * n_ * sizeof(T));
c_ = (T *) device_.allocate(m_ * n_ * sizeof(T));
// Initialize the content of the memory pools to prevent asan from
// complaining.
device_.memset(a_, 12, m_ * k_ * sizeof(T));
device_.memset(b_, 23, k_ * n_ * sizeof(T));
device_.memset(c_, 31, m_ * n_ * sizeof(T));
Eigen::array<TensorIndex, 2> sizeA;
sizeA[0] = m_;
sizeA[1] = k_;
Eigen::array<TensorIndex, 2> sizeB;
sizeB[0] = k_;
sizeB[1] = n_;
Eigen::array<TensorIndex, 2> sizeC;
sizeC[0] = m_;
sizeC[1] = n_;
const TensorMap<Tensor<T, 2, Eigen::RowMajor>, Eigen::Aligned> A(a_, sizeA);
const TensorMap<Tensor<T, 2, Eigen::RowMajor>, Eigen::Aligned> B(b_, sizeB);
TensorMap<Tensor<T, 2, Eigen::RowMajor>, Eigen::Aligned> C(c_, sizeC);
typedef typename Tensor<T, 2>::DimensionPair DimPair;
Eigen::array<DimPair, 1> dims;
dims[0] = DimPair(1, 0);
#ifdef EIGEN_USE_SYCL // warmup for sycl
for (int iter = 0; iter < 10; ++iter) {
C.device(device_) = A.contract(B, dims);
}
#endif
auto start = get_time();
for (int iter = 0; iter < num_iters; ++iter) {
C.device(device_) = A.contract(B, dims);
}
auto end = get_time();
// Record the number of FLOPs executed per second (size_ multiplications and
// additions for each value in the resulting tensor)
finalizeBenchmark(start, end, m_, k_, n_, num_iters, "contractionRowMajor");
device_.deallocate(a_);
device_.deallocate(b_);
device_.deallocate(c_);
device_.synchronize();
}
template<typename T, typename Device, typename TensorIndex>
void contractionAT(const Device& device_, TensorIndex num_iters, TensorIndex m_, TensorIndex k_, TensorIndex n_) {
T* a_;
T* b_;
T* c_;
a_ = (T *) device_.allocate(m_ * k_ * sizeof(T));
b_ = (T *) device_.allocate(k_ * n_ * sizeof(T));
c_ = (T *) device_.allocate(m_ * n_ * sizeof(T));
// Initialize the content of the memory pools to prevent asan from
// complaining.
device_.memset(a_, 12, m_ * k_ * sizeof(T));
device_.memset(b_, 23, k_ * n_ * sizeof(T));
device_.memset(c_, 31, m_ * n_ * sizeof(T));
Eigen::array<TensorIndex, 2> sizeA;
sizeA[0] = k_;
sizeA[1] = m_;
Eigen::array<TensorIndex, 2> sizeB;
sizeB[0] = k_;
sizeB[1] = n_;
Eigen::array<TensorIndex, 2> sizeC;
sizeC[0] = m_;
sizeC[1] = n_;
const TensorMap<Tensor<T, 2, Eigen::RowMajor>, Eigen::Aligned> A(a_, sizeA);
const TensorMap<Tensor<T, 2, Eigen::RowMajor>, Eigen::Aligned> B(b_, sizeB);
TensorMap<Tensor<T, 2, Eigen::RowMajor>, Eigen::Aligned> C(c_, sizeC);
typedef typename Tensor<T, 2>::DimensionPair DimPair;
Eigen::array<DimPair, 1> dims;
dims[0] = DimPair(0, 0);
#ifdef EIGEN_USE_SYCL // warmup for sycl
for (int iter = 0; iter < 10; ++iter) {
C.device(device_) = A.contract(B, dims);
}
#endif
auto start = get_time();
for (int iter = 0; iter < num_iters; ++iter) {
C.device(device_) = A.contract(B, dims);
}
auto end = get_time();
// Record the number of FLOPs executed per second (size_ multiplications and
// additions for each value in the resulting tensor)
finalizeBenchmark(start, end, m_, k_, n_, num_iters, "contractionAT");
device_.deallocate(a_);
device_.deallocate(b_);
device_.deallocate(c_);
device_.synchronize();
}
template<typename T, typename Device, typename TensorIndex>
void contractionBT(const Device& device_, TensorIndex num_iters, TensorIndex m_, TensorIndex k_, TensorIndex n_) {
T* a_;
T* b_;
T* c_;
a_ = (T *) device_.allocate(m_ * k_ * sizeof(T));
b_ = (T *) device_.allocate(k_ * n_ * sizeof(T));
c_ = (T *) device_.allocate(m_ * n_ * sizeof(T));
// Initialize the content of the memory pools to prevent asan from
// complaining.
device_.memset(a_, 12, m_ * k_ * sizeof(T));
device_.memset(b_, 23, k_ * n_ * sizeof(T));
device_.memset(c_, 31, m_ * n_ * sizeof(T));
Eigen::array<TensorIndex, 2> sizeA;
sizeA[0] = m_;
sizeA[1] = k_;
Eigen::array<TensorIndex, 2> sizeB;
sizeB[0] = n_;
sizeB[1] = k_;
Eigen::array<TensorIndex, 2> sizeC;
sizeC[0] = m_;
sizeC[1] = n_;
const TensorMap<Tensor<T, 2, Eigen::RowMajor>, Eigen::Aligned> A(a_, sizeA);
const TensorMap<Tensor<T, 2, Eigen::RowMajor>, Eigen::Aligned> B(b_, sizeB);
TensorMap<Tensor<T, 2, Eigen::RowMajor>, Eigen::Aligned> C(c_, sizeC);
typedef typename Tensor<T, 2>::DimensionPair DimPair;
Eigen::array<DimPair, 1> dims;
dims[0] = DimPair(1, 1);
#ifdef EIGEN_USE_SYCL // warmup for sycl
for (int iter = 0; iter < 10; ++iter) {
C.device(device_) = A.contract(B, dims);
}
#endif
auto start = get_time();
for (int iter = 0; iter < num_iters; ++iter) {
C.device(device_) = A.contract(B, dims);
}
auto end = get_time();
// Record the number of FLOPs executed per second (size_ multiplications and
// additions for each value in the resulting tensor)
finalizeBenchmark(start, end, m_, k_, n_, num_iters, "contractionBT");
device_.deallocate(a_);
device_.deallocate(b_);
device_.deallocate(c_);
device_.synchronize();
}
template<typename T, typename Device, typename TensorIndex>
void contractionABT(const Device& device_, TensorIndex num_iters, TensorIndex m_, TensorIndex k_, TensorIndex n_) {
T* a_;
T* b_;
T* c_;
a_ = (T *) device_.allocate(m_ * k_ * sizeof(T));
b_ = (T *) device_.allocate(k_ * n_ * sizeof(T));
c_ = (T *) device_.allocate(m_ * n_ * sizeof(T));
// Initialize the content of the memory pools to prevent asan from
// complaining.
device_.memset(a_, 12, m_ * k_ * sizeof(T));
device_.memset(b_, 23, k_ * n_ * sizeof(T));
device_.memset(c_, 31, m_ * n_ * sizeof(T));
Eigen::array<TensorIndex, 2> sizeA;
sizeA[0] = k_;
sizeA[1] = m_;
Eigen::array<TensorIndex, 2> sizeB;
sizeB[0] = n_;
sizeB[1] = k_;
Eigen::array<TensorIndex, 2> sizeC;
sizeC[0] = m_;
sizeC[1] = n_;
const TensorMap<Tensor<T, 2, Eigen::RowMajor>, Eigen::Aligned> A(a_, sizeA);
const TensorMap<Tensor<T, 2, Eigen::RowMajor>, Eigen::Aligned> B(b_, sizeB);
TensorMap<Tensor<T, 2, Eigen::RowMajor>, Eigen::Aligned> C(c_, sizeC);
typedef typename Tensor<T, 2>::DimensionPair DimPair;
Eigen::array<DimPair, 1> dims;
dims[0] = DimPair(0, 1);
#ifdef EIGEN_USE_SYCL // warmup for sycl
for (int iter = 0; iter < 10; ++iter) {
C.device(device_) = A.contract(B, dims);
}
#endif
auto start = get_time();
for (int iter = 0; iter < num_iters; ++iter) {
C.device(device_) = A.contract(B, dims);
}
auto end = get_time();
// Record the number of FLOPs executed per second (size_ multiplications and
// additions for each value in the resulting tensor)
finalizeBenchmark(start, end, m_, k_, n_, num_iters, "contractionABT");
device_.deallocate(a_);
device_.deallocate(b_);
device_.deallocate(c_);
device_.synchronize();
}
int main() {
cl::sycl::gpu_selector selector;
Eigen::QueueInterface queue(selector);
Eigen::SyclDevice device(&queue);
int64_t num_iters =20;
for(int64_t m = 32; m <= 4096; m *= 2)
for(int64_t k = 32; k <= 4096; k *= 2)
for(int64_t n = 32; n <= 4096; n*= 2){
(contraction<float>(device, num_iters, m, k, n));
(contractionRowMajor<float>(device, num_iters, m, k, n));
(contractionAT<float>(device, num_iters, m, k, n));
(contractionBT<float>(device, num_iters, m, k, n));
(contractionABT<float>(device, num_iters, m, k, n));
}
return 0;
}
#endif // EIGEN_BENCH_CONTRACT_SYCL