mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
76faf4a965
improve mixing type support in operations between arrays and scalars: - 2 * ArrayXcf is now optimized in the sense that the integer 2 is properly promoted to a float instead of a complex<float> (fix a regression) - 2.1 * ArrayXi is now forbiden (previously, 2.1 was converted to 2) - This mechanism should be applicable to any custom scalar type, assuming NumTraits<T>::Literal is properly defined (it defaults to T)
108 lines
4.3 KiB
C++
108 lines
4.3 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
|
|
// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define TEST_ENABLE_TEMPORARY_TRACKING
|
|
|
|
#include "main.h"
|
|
|
|
template <int N, typename XprType>
|
|
void use_n_times(const XprType &xpr)
|
|
{
|
|
typename internal::nested_eval<XprType,N>::type mat(xpr);
|
|
typename XprType::PlainObject res(mat.rows(), mat.cols());
|
|
nb_temporaries--; // remove res
|
|
res.setZero();
|
|
for(int i=0; i<N; ++i)
|
|
res += mat;
|
|
}
|
|
|
|
template <int N, typename ReferenceType, typename XprType>
|
|
bool verify_eval_type(const XprType &, const ReferenceType&)
|
|
{
|
|
typedef typename internal::nested_eval<XprType,N>::type EvalType;
|
|
return internal::is_same<typename internal::remove_all<EvalType>::type, typename internal::remove_all<ReferenceType>::type>::value;
|
|
}
|
|
|
|
template <typename MatrixType> void run_nesting_ops_1(const MatrixType& _m)
|
|
{
|
|
typename internal::nested_eval<MatrixType,2>::type m(_m);
|
|
|
|
// Make really sure that we are in debug mode!
|
|
VERIFY_RAISES_ASSERT(eigen_assert(false));
|
|
|
|
// The only intention of these tests is to ensure that this code does
|
|
// not trigger any asserts or segmentation faults... more to come.
|
|
VERIFY_IS_APPROX( (m.transpose() * m).diagonal().sum(), (m.transpose() * m).diagonal().sum() );
|
|
VERIFY_IS_APPROX( (m.transpose() * m).diagonal().array().abs().sum(), (m.transpose() * m).diagonal().array().abs().sum() );
|
|
|
|
VERIFY_IS_APPROX( (m.transpose() * m).array().abs().sum(), (m.transpose() * m).array().abs().sum() );
|
|
}
|
|
|
|
template <typename MatrixType> void run_nesting_ops_2(const MatrixType& _m)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
Index rows = _m.rows();
|
|
Index cols = _m.cols();
|
|
MatrixType m1 = MatrixType::Random(rows,cols);
|
|
Matrix<Scalar,MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime,ColMajor> m2;
|
|
|
|
if((MatrixType::SizeAtCompileTime==Dynamic))
|
|
{
|
|
VERIFY_EVALUATION_COUNT( use_n_times<1>(m1 + m1*m1), 1 );
|
|
VERIFY_EVALUATION_COUNT( use_n_times<10>(m1 + m1*m1), 1 );
|
|
|
|
VERIFY_EVALUATION_COUNT( use_n_times<1>(m1.template triangularView<Lower>().solve(m1.col(0))), 1 );
|
|
VERIFY_EVALUATION_COUNT( use_n_times<10>(m1.template triangularView<Lower>().solve(m1.col(0))), 1 );
|
|
|
|
VERIFY_EVALUATION_COUNT( use_n_times<1>(Scalar(2)*m1.template triangularView<Lower>().solve(m1.col(0))), 2 ); // FIXME could be one by applying the scaling in-place on the solve result
|
|
VERIFY_EVALUATION_COUNT( use_n_times<1>(m1.col(0)+m1.template triangularView<Lower>().solve(m1.col(0))), 2 ); // FIXME could be one by adding m1.col() inplace
|
|
VERIFY_EVALUATION_COUNT( use_n_times<10>(m1.col(0)+m1.template triangularView<Lower>().solve(m1.col(0))), 2 );
|
|
}
|
|
|
|
{
|
|
VERIFY( verify_eval_type<10>(m1, m1) );
|
|
if(!NumTraits<Scalar>::IsComplex)
|
|
{
|
|
VERIFY( verify_eval_type<3>(2*m1, 2*m1) );
|
|
VERIFY( verify_eval_type<4>(2*m1, m1) );
|
|
}
|
|
else
|
|
{
|
|
VERIFY( verify_eval_type<2>(2*m1, 2*m1) );
|
|
VERIFY( verify_eval_type<3>(2*m1, m1) );
|
|
}
|
|
VERIFY( verify_eval_type<2>(m1+m1, m1+m1) );
|
|
VERIFY( verify_eval_type<3>(m1+m1, m1) );
|
|
VERIFY( verify_eval_type<1>(m1*m1.transpose(), m2) );
|
|
VERIFY( verify_eval_type<1>(m1*(m1+m1).transpose(), m2) );
|
|
VERIFY( verify_eval_type<2>(m1*m1.transpose(), m2) );
|
|
VERIFY( verify_eval_type<1>(m1+m1*m1, m1) );
|
|
|
|
VERIFY( verify_eval_type<1>(m1.template triangularView<Lower>().solve(m1), m1) );
|
|
VERIFY( verify_eval_type<1>(m1+m1.template triangularView<Lower>().solve(m1), m1) );
|
|
}
|
|
}
|
|
|
|
|
|
void test_nesting_ops()
|
|
{
|
|
CALL_SUBTEST_1(run_nesting_ops_1(MatrixXf::Random(25,25)));
|
|
CALL_SUBTEST_2(run_nesting_ops_1(MatrixXcd::Random(25,25)));
|
|
CALL_SUBTEST_3(run_nesting_ops_1(Matrix4f::Random()));
|
|
CALL_SUBTEST_4(run_nesting_ops_1(Matrix2d::Random()));
|
|
|
|
Index s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
|
|
CALL_SUBTEST_1( run_nesting_ops_2(MatrixXf(s,s)) );
|
|
CALL_SUBTEST_2( run_nesting_ops_2(MatrixXcd(s,s)) );
|
|
CALL_SUBTEST_3( run_nesting_ops_2(Matrix4f()) );
|
|
CALL_SUBTEST_4( run_nesting_ops_2(Matrix2d()) );
|
|
TEST_SET_BUT_UNUSED_VARIABLE(s)
|
|
}
|