mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
93115619c2
* various improvements in BTL including trisolver and cholesky bench
207 lines
5.4 KiB
C++
207 lines
5.4 KiB
C++
|
|
//g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out
|
|
//g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out
|
|
// -DNOGMM -DNOMTL
|
|
|
|
#ifndef SIZE
|
|
#define SIZE 10000
|
|
#endif
|
|
|
|
#ifndef DENSITY
|
|
#define DENSITY 0.01
|
|
#endif
|
|
|
|
#ifndef REPEAT
|
|
#define REPEAT 1
|
|
#endif
|
|
|
|
#include "BenchSparseUtil.h"
|
|
|
|
#ifndef MINDENSITY
|
|
#define MINDENSITY 0.0004
|
|
#endif
|
|
|
|
#ifndef NBTRIES
|
|
#define NBTRIES 10
|
|
#endif
|
|
|
|
#define BENCH(X) \
|
|
timer.reset(); \
|
|
for (int _j=0; _j<NBTRIES; ++_j) { \
|
|
timer.start(); \
|
|
for (int _k=0; _k<REPEAT; ++_k) { \
|
|
X \
|
|
} timer.stop(); }
|
|
|
|
typedef SparseMatrix<Scalar,Upper> EigenSparseTriMatrix;
|
|
typedef SparseMatrix<Scalar,RowMajorBit|Upper> EigenSparseTriMatrixRow;
|
|
|
|
void fillMatrix(float density, int rows, int cols, EigenSparseTriMatrix& dst)
|
|
{
|
|
dst.startFill(rows*cols*density);
|
|
for(int j = 0; j < cols; j++)
|
|
{
|
|
for(int i = 0; i < j; i++)
|
|
{
|
|
Scalar v = (ei_random<float>(0,1) < density) ? ei_random<Scalar>() : 0;
|
|
if (v!=0)
|
|
dst.fill(i,j) = v;
|
|
}
|
|
dst.fill(j,j) = ei_random<Scalar>();
|
|
}
|
|
dst.endFill();
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
int rows = SIZE;
|
|
int cols = SIZE;
|
|
float density = DENSITY;
|
|
BenchTimer timer;
|
|
#if 1
|
|
EigenSparseTriMatrix sm1(rows,cols);
|
|
VectorXf b = VectorXf::Random(cols);
|
|
VectorXf x = VectorXf::Random(cols);
|
|
|
|
bool densedone = false;
|
|
|
|
for (float density = DENSITY; density>=MINDENSITY; density*=0.5)
|
|
{
|
|
EigenSparseTriMatrix sm1(rows, cols);
|
|
fillMatrix(density, rows, cols, sm1);
|
|
|
|
// dense matrices
|
|
#ifdef DENSEMATRIX
|
|
if (!densedone)
|
|
{
|
|
densedone = true;
|
|
std::cout << "Eigen Dense\t" << density*100 << "%\n";
|
|
DenseMatrix m1(rows,cols);
|
|
Matrix<Scalar,Dynamic,Dynamic,Dynamic,Dynamic,RowMajorBit> m2(rows,cols);
|
|
eiToDense(sm1, m1);
|
|
m2 = m1;
|
|
|
|
BENCH(x = m1.marked<Upper>().inverseProduct(b);)
|
|
std::cout << " colmajor^-1 * b:\t" << timer.value() << endl;
|
|
std::cerr << x.transpose() << "\n";
|
|
|
|
BENCH(x = m2.marked<Upper>().inverseProduct(b);)
|
|
std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl;
|
|
std::cerr << x.transpose() << "\n";
|
|
}
|
|
#endif
|
|
|
|
// eigen sparse matrices
|
|
{
|
|
std::cout << "Eigen sparse\t" << density*100 << "%\n";
|
|
EigenSparseTriMatrixRow sm2 = sm1;
|
|
|
|
BENCH(x = sm1.inverseProduct(b);)
|
|
std::cout << " colmajor^-1 * b:\t" << timer.value() << endl;
|
|
std::cerr << x.transpose() << "\n";
|
|
|
|
BENCH(x = sm2.inverseProduct(b);)
|
|
std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl;
|
|
std::cerr << x.transpose() << "\n";
|
|
|
|
// x = b;
|
|
// BENCH(sm1.inverseProductInPlace(x);)
|
|
// std::cout << " colmajor^-1 * b:\t" << timer.value() << " (inplace)" << endl;
|
|
// std::cerr << x.transpose() << "\n";
|
|
//
|
|
// x = b;
|
|
// BENCH(sm2.inverseProductInPlace(x);)
|
|
// std::cout << " rowmajor^-1 * b:\t" << timer.value() << " (inplace)" << endl;
|
|
// std::cerr << x.transpose() << "\n";
|
|
}
|
|
|
|
// GMM++
|
|
#ifndef NOGMM
|
|
{
|
|
std::cout << "GMM++ sparse\t" << density*100 << "%\n";
|
|
GmmSparse m1(rows,cols);
|
|
gmm::csr_matrix<Scalar> m2;
|
|
eiToGmm(sm1, m1);
|
|
gmm::copy(m1,m2);
|
|
std::vector<Scalar> gmmX(cols), gmmB(cols);
|
|
Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols) = x;
|
|
Map<Matrix<Scalar,Dynamic,1> >(&gmmB[0], cols) = b;
|
|
|
|
gmmX = gmmB;
|
|
BENCH(gmm::upper_tri_solve(m1, gmmX, false);)
|
|
std::cout << " colmajor^-1 * b:\t" << timer.value() << endl;
|
|
std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n";
|
|
|
|
gmmX = gmmB;
|
|
BENCH(gmm::upper_tri_solve(m2, gmmX, false);)
|
|
timer.stop();
|
|
std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl;
|
|
std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n";
|
|
}
|
|
#endif
|
|
|
|
// MTL4
|
|
#ifndef NOMTL
|
|
{
|
|
std::cout << "MTL4\t" << density*100 << "%\n";
|
|
MtlSparse m1(rows,cols);
|
|
MtlSparseRowMajor m2(rows,cols);
|
|
eiToMtl(sm1, m1);
|
|
m2 = m1;
|
|
mtl::dense_vector<Scalar> x(rows, 1.0);
|
|
mtl::dense_vector<Scalar> b(rows, 1.0);
|
|
|
|
BENCH(x = mtl::upper_trisolve(m1,b);)
|
|
std::cout << " colmajor^-1 * b:\t" << timer.value() << endl;
|
|
// std::cerr << x << "\n";
|
|
|
|
BENCH(x = mtl::upper_trisolve(m2,b);)
|
|
std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl;
|
|
// std::cerr << x << "\n";
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
// bench small matrices (in-place versus return bye value)
|
|
{
|
|
timer.reset();
|
|
for (int _j=0; _j<10; ++_j) {
|
|
Matrix4f m = Matrix4f::Random();
|
|
Vector4f b = Vector4f::Random();
|
|
Vector4f x = Vector4f::Random();
|
|
timer.start();
|
|
for (int _k=0; _k<1000000; ++_k) {
|
|
b = m.inverseProduct(b);
|
|
}
|
|
timer.stop();
|
|
}
|
|
std::cout << "4x4 :\t" << timer.value() << endl;
|
|
}
|
|
|
|
{
|
|
timer.reset();
|
|
for (int _j=0; _j<10; ++_j) {
|
|
Matrix4f m = Matrix4f::Random();
|
|
Vector4f b = Vector4f::Random();
|
|
Vector4f x = Vector4f::Random();
|
|
timer.start();
|
|
for (int _k=0; _k<1000000; ++_k) {
|
|
m.inverseProductInPlace(x);
|
|
}
|
|
timer.stop();
|
|
}
|
|
std::cout << "4x4 IP :\t" << timer.value() << endl;
|
|
}
|
|
#endif
|
|
|
|
std::cout << "\n\n";
|
|
|
|
return 0;
|
|
}
|
|
|