2
0
mirror of https://gitlab.com/libeigen/eigen.git synced 2025-01-06 14:14:46 +08:00
eigen/test/geo_orthomethods.cpp
Gael Guennebaud 82f0ce2726 Get rid of EIGEN_TEST_FUNC, unit tests must now be declared with EIGEN_DECLARE_TEST(mytest) { /* code */ }.
This provide several advantages:
- more flexibility in designing unit tests
- unit tests can be glued to speed up compilation
- unit tests are compiled with same predefined macros, which is a requirement for zapcc
2018-07-17 14:46:15 +02:00

134 lines
4.7 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/Geometry>
#include <Eigen/LU>
#include <Eigen/SVD>
/* this test covers the following files:
Geometry/OrthoMethods.h
*/
template<typename Scalar> void orthomethods_3()
{
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,3,1> Vector3;
typedef Matrix<Scalar,4,1> Vector4;
Vector3 v0 = Vector3::Random(),
v1 = Vector3::Random(),
v2 = Vector3::Random();
// cross product
VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v1), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN(v1.dot(v1.cross(v2)), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).dot(v2), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN(v2.dot(v1.cross(v2)), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(Vector3::Random()).dot(v1), Scalar(1));
Matrix3 mat3;
mat3 << v0.normalized(),
(v0.cross(v1)).normalized(),
(v0.cross(v1).cross(v0)).normalized();
VERIFY(mat3.isUnitary());
mat3.setRandom();
VERIFY_IS_APPROX(v0.cross(mat3*v1), -(mat3*v1).cross(v0));
VERIFY_IS_APPROX(v0.cross(mat3.lazyProduct(v1)), -(mat3.lazyProduct(v1)).cross(v0));
// colwise/rowwise cross product
mat3.setRandom();
Vector3 vec3 = Vector3::Random();
Matrix3 mcross;
int i = internal::random<int>(0,2);
mcross = mat3.colwise().cross(vec3);
VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3));
VERIFY_IS_MUCH_SMALLER_THAN((mat3.adjoint() * mat3.colwise().cross(vec3)).diagonal().cwiseAbs().sum(), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN((mat3.adjoint() * mat3.colwise().cross(Vector3::Random())).diagonal().cwiseAbs().sum(), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN((vec3.adjoint() * mat3.colwise().cross(vec3)).cwiseAbs().sum(), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN((vec3.adjoint() * Matrix3::Random().colwise().cross(vec3)).cwiseAbs().sum(), Scalar(1));
mcross = mat3.rowwise().cross(vec3);
VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3));
// cross3
Vector4 v40 = Vector4::Random(),
v41 = Vector4::Random(),
v42 = Vector4::Random();
v40.w() = v41.w() = v42.w() = 0;
v42.template head<3>() = v40.template head<3>().cross(v41.template head<3>());
VERIFY_IS_APPROX(v40.cross3(v41), v42);
VERIFY_IS_MUCH_SMALLER_THAN(v40.cross3(Vector4::Random()).dot(v40), Scalar(1));
// check mixed product
typedef Matrix<RealScalar, 3, 1> RealVector3;
RealVector3 rv1 = RealVector3::Random();
VERIFY_IS_APPROX(v1.cross(rv1.template cast<Scalar>()), v1.cross(rv1));
VERIFY_IS_APPROX(rv1.template cast<Scalar>().cross(v1), rv1.cross(v1));
}
template<typename Scalar, int Size> void orthomethods(int size=Size)
{
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar,Size,1> VectorType;
typedef Matrix<Scalar,3,Size> Matrix3N;
typedef Matrix<Scalar,Size,3> MatrixN3;
typedef Matrix<Scalar,3,1> Vector3;
VectorType v0 = VectorType::Random(size);
// unitOrthogonal
VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().dot(v0), Scalar(1));
VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), RealScalar(1));
if (size>=3)
{
v0.template head<2>().setZero();
v0.tail(size-2).setRandom();
VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().dot(v0), Scalar(1));
VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), RealScalar(1));
}
// colwise/rowwise cross product
Vector3 vec3 = Vector3::Random();
int i = internal::random<int>(0,size-1);
Matrix3N mat3N(3,size), mcross3N(3,size);
mat3N.setRandom();
mcross3N = mat3N.colwise().cross(vec3);
VERIFY_IS_APPROX(mcross3N.col(i), mat3N.col(i).cross(vec3));
MatrixN3 matN3(size,3), mcrossN3(size,3);
matN3.setRandom();
mcrossN3 = matN3.rowwise().cross(vec3);
VERIFY_IS_APPROX(mcrossN3.row(i), matN3.row(i).cross(vec3));
}
EIGEN_DECLARE_TEST(geo_orthomethods)
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( orthomethods_3<float>() );
CALL_SUBTEST_2( orthomethods_3<double>() );
CALL_SUBTEST_4( orthomethods_3<std::complex<double> >() );
CALL_SUBTEST_1( (orthomethods<float,2>()) );
CALL_SUBTEST_2( (orthomethods<double,2>()) );
CALL_SUBTEST_1( (orthomethods<float,3>()) );
CALL_SUBTEST_2( (orthomethods<double,3>()) );
CALL_SUBTEST_3( (orthomethods<float,7>()) );
CALL_SUBTEST_4( (orthomethods<std::complex<double>,8>()) );
CALL_SUBTEST_5( (orthomethods<float,Dynamic>(36)) );
CALL_SUBTEST_6( (orthomethods<double,Dynamic>(35)) );
}
}