mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
139 lines
4.8 KiB
C++
139 lines
4.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2015
|
|
// Mehdi Goli Codeplay Software Ltd.
|
|
// Ralph Potter Codeplay Software Ltd.
|
|
// Luke Iwanski Codeplay Software Ltd.
|
|
// Contact: <eigen@codeplay.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
#define EIGEN_TEST_NO_COMPLEX
|
|
#define EIGEN_TEST_FUNC cxx11_tensor_reduction_sycl
|
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
|
|
#define EIGEN_USE_SYCL
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/CXX11/Tensor>
|
|
|
|
|
|
|
|
static void test_full_reductions_sycl(const Eigen::SyclDevice& sycl_device) {
|
|
|
|
const int num_rows = 452;
|
|
const int num_cols = 765;
|
|
array<int, 2> tensorRange = {{num_rows, num_cols}};
|
|
|
|
Tensor<float, 2> in(tensorRange);
|
|
Tensor<float, 0> full_redux;
|
|
Tensor<float, 0> full_redux_gpu;
|
|
|
|
in.setRandom();
|
|
|
|
full_redux = in.sum();
|
|
|
|
float* gpu_in_data = static_cast<float*>(sycl_device.allocate(in.dimensions().TotalSize()*sizeof(float)));
|
|
float* gpu_out_data =(float*)sycl_device.allocate(sizeof(float));
|
|
|
|
TensorMap<Tensor<float, 2> > in_gpu(gpu_in_data, tensorRange);
|
|
TensorMap<Tensor<float, 0> > out_gpu(gpu_out_data);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.dimensions().TotalSize())*sizeof(float));
|
|
out_gpu.device(sycl_device) = in_gpu.sum();
|
|
sycl_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_data, sizeof(float));
|
|
// Check that the CPU and GPU reductions return the same result.
|
|
VERIFY_IS_APPROX(full_redux_gpu(), full_redux());
|
|
|
|
sycl_device.deallocate(gpu_in_data);
|
|
sycl_device.deallocate(gpu_out_data);
|
|
}
|
|
|
|
static void test_first_dim_reductions_sycl(const Eigen::SyclDevice& sycl_device) {
|
|
|
|
int dim_x = 145;
|
|
int dim_y = 1;
|
|
int dim_z = 67;
|
|
|
|
array<int, 3> tensorRange = {{dim_x, dim_y, dim_z}};
|
|
Eigen::array<int, 1> red_axis;
|
|
red_axis[0] = 0;
|
|
array<int, 2> reduced_tensorRange = {{dim_y, dim_z}};
|
|
|
|
Tensor<float, 3> in(tensorRange);
|
|
Tensor<float, 2> redux(reduced_tensorRange);
|
|
Tensor<float, 2> redux_gpu(reduced_tensorRange);
|
|
|
|
in.setRandom();
|
|
|
|
redux= in.sum(red_axis);
|
|
|
|
float* gpu_in_data = static_cast<float*>(sycl_device.allocate(in.dimensions().TotalSize()*sizeof(float)));
|
|
float* gpu_out_data = static_cast<float*>(sycl_device.allocate(redux_gpu.dimensions().TotalSize()*sizeof(float)));
|
|
|
|
TensorMap<Tensor<float, 3> > in_gpu(gpu_in_data, tensorRange);
|
|
TensorMap<Tensor<float, 2> > out_gpu(gpu_out_data, reduced_tensorRange);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.dimensions().TotalSize())*sizeof(float));
|
|
out_gpu.device(sycl_device) = in_gpu.sum(red_axis);
|
|
sycl_device.memcpyDeviceToHost(redux_gpu.data(), gpu_out_data, redux_gpu.dimensions().TotalSize()*sizeof(float));
|
|
|
|
// Check that the CPU and GPU reductions return the same result.
|
|
for(int j=0; j<reduced_tensorRange[0]; j++ )
|
|
for(int k=0; k<reduced_tensorRange[1]; k++ )
|
|
VERIFY_IS_APPROX(redux_gpu(j,k), redux(j,k));
|
|
|
|
sycl_device.deallocate(gpu_in_data);
|
|
sycl_device.deallocate(gpu_out_data);
|
|
}
|
|
|
|
static void test_last_dim_reductions_sycl(const Eigen::SyclDevice &sycl_device) {
|
|
|
|
int dim_x = 567;
|
|
int dim_y = 1;
|
|
int dim_z = 47;
|
|
|
|
array<int, 3> tensorRange = {{dim_x, dim_y, dim_z}};
|
|
Eigen::array<int, 1> red_axis;
|
|
red_axis[0] = 2;
|
|
array<int, 2> reduced_tensorRange = {{dim_x, dim_y}};
|
|
|
|
Tensor<float, 3> in(tensorRange);
|
|
Tensor<float, 2> redux(reduced_tensorRange);
|
|
Tensor<float, 2> redux_gpu(reduced_tensorRange);
|
|
|
|
in.setRandom();
|
|
|
|
redux= in.sum(red_axis);
|
|
|
|
float* gpu_in_data = static_cast<float*>(sycl_device.allocate(in.dimensions().TotalSize()*sizeof(float)));
|
|
float* gpu_out_data = static_cast<float*>(sycl_device.allocate(redux_gpu.dimensions().TotalSize()*sizeof(float)));
|
|
|
|
TensorMap<Tensor<float, 3> > in_gpu(gpu_in_data, tensorRange);
|
|
TensorMap<Tensor<float, 2> > out_gpu(gpu_out_data, reduced_tensorRange);
|
|
|
|
sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.dimensions().TotalSize())*sizeof(float));
|
|
out_gpu.device(sycl_device) = in_gpu.sum(red_axis);
|
|
sycl_device.memcpyDeviceToHost(redux_gpu.data(), gpu_out_data, redux_gpu.dimensions().TotalSize()*sizeof(float));
|
|
// Check that the CPU and GPU reductions return the same result.
|
|
for(int j=0; j<reduced_tensorRange[0]; j++ )
|
|
for(int k=0; k<reduced_tensorRange[1]; k++ )
|
|
VERIFY_IS_APPROX(redux_gpu(j,k), redux(j,k));
|
|
|
|
sycl_device.deallocate(gpu_in_data);
|
|
sycl_device.deallocate(gpu_out_data);
|
|
|
|
}
|
|
|
|
void test_cxx11_tensor_reduction_sycl() {
|
|
cl::sycl::gpu_selector s;
|
|
Eigen::SyclDevice sycl_device(s);
|
|
CALL_SUBTEST((test_full_reductions_sycl(sycl_device)));
|
|
CALL_SUBTEST((test_first_dim_reductions_sycl(sycl_device)));
|
|
CALL_SUBTEST((test_last_dim_reductions_sycl(sycl_device)));
|
|
|
|
}
|