mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
6347b1db5b
it never made very precise sense. but now does it still make any?
165 lines
5.2 KiB
C++
165 lines
5.2 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_EULERANGLES_H
|
|
#define EIGEN_EULERANGLES_H
|
|
|
|
template<typename Other,
|
|
int OtherRows=Other::RowsAtCompileTime,
|
|
int OtherCols=Other::ColsAtCompileTime>
|
|
struct ei_eulerangles_assign_impl;
|
|
|
|
// enum {
|
|
// XYZ,
|
|
// XYX,
|
|
//
|
|
//
|
|
// };
|
|
|
|
/** \class EulerAngles
|
|
*
|
|
* \brief Represents a rotation in a 3 dimensional space as three Euler angles
|
|
*
|
|
* \param _Scalar the scalar type, i.e., the type of the angles.
|
|
*
|
|
* \sa class Quaternion, class AngleAxis, class Transform
|
|
*/
|
|
template<typename _Scalar>
|
|
class EulerAngles
|
|
{
|
|
public:
|
|
enum { Dim = 3 };
|
|
/** the scalar type of the coefficients */
|
|
typedef _Scalar Scalar;
|
|
typedef Matrix<Scalar,3,3> Matrix3;
|
|
typedef Matrix<Scalar,3,1> Vector3;
|
|
typedef Quaternion<Scalar> QuaternionType;
|
|
typedef AngleAxis<Scalar> AngleAxisType;
|
|
|
|
protected:
|
|
|
|
Vector3 m_angles;
|
|
|
|
public:
|
|
|
|
EulerAngles() {}
|
|
inline EulerAngles(Scalar a0, Scalar a1, Scalar a2) : m_angles(a0, a1, a2) {}
|
|
inline EulerAngles(const QuaternionType& q) { *this = q; }
|
|
inline EulerAngles(const AngleAxisType& aa) { *this = aa; }
|
|
template<typename Derived>
|
|
inline EulerAngles(const MatrixBase<Derived>& m) { *this = m; }
|
|
|
|
Scalar angle(int i) const { return m_angles.coeff(i); }
|
|
Scalar& angle(int i) { return m_angles.coeffRef(i); }
|
|
|
|
const Vector3& coeffs() const { return m_angles; }
|
|
Vector3& coeffs() { return m_angles; }
|
|
|
|
EulerAngles& operator=(const QuaternionType& q);
|
|
EulerAngles& operator=(const AngleAxisType& ea);
|
|
template<typename Derived>
|
|
EulerAngles& operator=(const MatrixBase<Derived>& m);
|
|
|
|
template<typename Derived>
|
|
EulerAngles& fromRotationMatrix(const MatrixBase<Derived>& m);
|
|
Matrix3 toRotationMatrix(void) const;
|
|
};
|
|
|
|
/** Set \c *this from a quaternion.
|
|
* The axis is normalized.
|
|
*/
|
|
template<typename Scalar>
|
|
EulerAngles<Scalar>& EulerAngles<Scalar>::operator=(const QuaternionType& q)
|
|
{
|
|
Scalar y2 = q.y() * q.y();
|
|
m_angles.coeffRef(0) = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2)));
|
|
m_angles.coeffRef(1) = std::asin( 2*(q.w()*q.y() - q.z()*q.x()));
|
|
m_angles.coeffRef(2) = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z())));
|
|
return *this;
|
|
}
|
|
|
|
/** Set \c *this from Euler angles \a ea.
|
|
*/
|
|
template<typename Scalar>
|
|
EulerAngles<Scalar>& EulerAngles<Scalar>::operator=(const AngleAxisType& aa)
|
|
{
|
|
return *this = QuaternionType(aa);
|
|
}
|
|
|
|
/** Set \c *this from the expression \a xpr:
|
|
* - if \a xpr is a 3x1 vector, then \a xpr is assumed to be a vector of angles
|
|
* - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
|
|
* and \a xpr is converted to Euler angles
|
|
*/
|
|
template<typename Scalar>
|
|
template<typename Derived>
|
|
EulerAngles<Scalar>& EulerAngles<Scalar>::operator=(const MatrixBase<Derived>& other)
|
|
{
|
|
ei_eulerangles_assign_impl<Derived>::run(*this,other.derived());
|
|
return *this;
|
|
}
|
|
|
|
/** Constructs and \returns an equivalent 3x3 rotation matrix.
|
|
*/
|
|
template<typename Scalar>
|
|
typename EulerAngles<Scalar>::Matrix3
|
|
EulerAngles<Scalar>::toRotationMatrix(void) const
|
|
{
|
|
Vector3 c = m_angles.cwise().cos();
|
|
Vector3 s = m_angles.cwise().sin();
|
|
return Matrix3() <<
|
|
c.y()*c.z(), -c.y()*s.z(), s.y(),
|
|
c.z()*s.x()*s.y()+c.x()*s.z(), c.x()*c.z()-s.x()*s.y()*s.z(), -c.y()*s.x(),
|
|
-c.x()*c.z()*s.y()+s.x()*s.z(), c.z()*s.x()+c.x()*s.y()*s.z(), c.x()*c.y();
|
|
}
|
|
|
|
// set from a rotation matrix
|
|
template<typename Other>
|
|
struct ei_eulerangles_assign_impl<Other,3,3>
|
|
{
|
|
typedef typename Other::Scalar Scalar;
|
|
inline static void run(EulerAngles<Scalar>& ea, const Other& mat)
|
|
{
|
|
// mat = cy*cz -cy*sz sy
|
|
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
|
|
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
|
|
ea.angle(1) = std::asin(mat.coeff(0,2));
|
|
ea.angle(0) = std::atan2(-mat.coeff(1,2),mat.coeff(2,2));
|
|
ea.angle(2) = std::atan2(-mat.coeff(0,1),mat.coeff(0,0));
|
|
}
|
|
};
|
|
|
|
// set from a vector of angles
|
|
template<typename Other>
|
|
struct ei_eulerangles_assign_impl<Other,3,1>
|
|
{
|
|
typedef typename Other::Scalar Scalar;
|
|
inline static void run(EulerAngles<Scalar>& ea, const Other& vec)
|
|
{
|
|
ea.coeffs() = vec;
|
|
}
|
|
};
|
|
|
|
#endif // EIGEN_EULERANGLES_H
|