mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
04dc63776a
- write extentive unit tests (maybe this already exist in other projects) - the level2 functions still have to be implemented
226 lines
6.1 KiB
C
226 lines
6.1 KiB
C
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "common.h"
|
|
|
|
int EIGEN_BLAS_FUNC(axpy)(int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
|
{
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
if(*incx==1 && *incy==1)
|
|
vector(y,*n) += alpha * vector(x,*n);
|
|
else
|
|
vector(y,*n,*incy) += alpha * vector(x,*n,*incx);
|
|
|
|
return 1;
|
|
}
|
|
|
|
// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
|
|
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
|
|
RealScalar EIGEN_BLAS_FUNC(asum)(int *n, RealScalar *px, int *incx)
|
|
{
|
|
int size = IsComplex ? 2* *n : *n;
|
|
|
|
if(*incx==1)
|
|
return vector(px,size).cwise().abs().sum();
|
|
else
|
|
return vector(px,size,*incx).cwise().abs().sum();
|
|
|
|
return 1;
|
|
}
|
|
|
|
int EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
|
{
|
|
int size = IsComplex ? 2* *n : *n;
|
|
|
|
if(*incx==1 && *incy==1)
|
|
vector(py,size) = vector(px,size);
|
|
else
|
|
vector(py,size,*incy) = vector(px,size,*incx);
|
|
|
|
return 1;
|
|
}
|
|
|
|
// computes a vector-vector dot product.
|
|
Scalar EIGEN_BLAS_FUNC(dot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
|
{
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
|
|
if(*incx==1 && *incy==1)
|
|
return (vector(x,*n).cwise()*vector(y,*n)).sum();
|
|
|
|
return (vector(x,*n,*incx).cwise()*vector(y,*n,*incy)).sum();
|
|
}
|
|
|
|
/*
|
|
|
|
// computes a vector-vector dot product with extended precision.
|
|
Scalar EIGEN_BLAS_FUNC(sdot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
|
{
|
|
// TODO
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
|
|
if(*incx==1 && *incy==1)
|
|
return vector(x,*n).dot(vector(y,*n));
|
|
|
|
return vector(x,*n,*incx).dot(vector(y,*n,*incy));
|
|
}
|
|
|
|
*/
|
|
|
|
#if ISCOMPLEX
|
|
|
|
// computes a dot product of a conjugated vector with another vector.
|
|
Scalar EIGEN_BLAS_FUNC(dotc)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
|
{
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
|
|
if(*incx==1 && *incy==1)
|
|
return vector(x,*n).dot(vector(y,*n));
|
|
|
|
return vector(x,*n,*incx).dot(vector(y,*n,*incy));
|
|
}
|
|
|
|
// computes a vector-vector dot product without complex conjugation.
|
|
Scalar EIGEN_BLAS_FUNC(dotu)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
|
{
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
|
|
if(*incx==1 && *incy==1)
|
|
return (vector(x,*n).cwise()*vector(y,*n)).sum();
|
|
|
|
return (vector(x,*n,*incx).cwise()*vector(y,*n,*incy)).sum();
|
|
}
|
|
|
|
#endif // ISCOMPLEX
|
|
|
|
// computes the Euclidean norm of a vector.
|
|
Scalar EIGEN_BLAS_FUNC(nrm2)(int *n, RealScalar *px, int *incx)
|
|
{
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
|
|
if(*incx==1)
|
|
return vector(x,*n).norm();
|
|
|
|
return vector(x,*n,*incx).norm();
|
|
}
|
|
|
|
int EIGEN_BLAS_FUNC(rot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
|
|
{
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
Scalar c = *reinterpret_cast<Scalar*>(pc);
|
|
Scalar s = *reinterpret_cast<Scalar*>(ps);
|
|
|
|
StridedVectorType vx(vector(x,*n,*incx));
|
|
StridedVectorType vy(vector(y,*n,*incy));
|
|
ei_apply_rotation_in_the_plane(vx, vy, PlanarRotation<Scalar>(c,s));
|
|
return 1;
|
|
}
|
|
|
|
int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps)
|
|
{
|
|
Scalar a = *reinterpret_cast<Scalar*>(pa);
|
|
Scalar b = *reinterpret_cast<Scalar*>(pb);
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
Scalar* s = reinterpret_cast<Scalar*>(ps);
|
|
|
|
PlanarRotation<Scalar> r;
|
|
r.makeGivens(a,b);
|
|
*c = r.c();
|
|
*s = r.s();
|
|
|
|
return 1;
|
|
}
|
|
|
|
#if !ISCOMPLEX
|
|
/*
|
|
// performs rotation of points in the modified plane.
|
|
int EIGEN_BLAS_FUNC(rotm)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *param)
|
|
{
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar* y = reinterpret_cast<Scalar*>(py);
|
|
|
|
// TODO
|
|
|
|
return 0;
|
|
}
|
|
|
|
// computes the modified parameters for a Givens rotation.
|
|
int EIGEN_BLAS_FUNC(rotmg)(RealScalar *d1, RealScalar *d2, RealScalar *x1, RealScalar *x2, RealScalar *param)
|
|
{
|
|
// TODO
|
|
|
|
return 0;
|
|
}
|
|
*/
|
|
#endif // !ISCOMPLEX
|
|
|
|
int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *px, int *incx, RealScalar *palpha)
|
|
{
|
|
Scalar* x = reinterpret_cast<Scalar*>(px);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
if(*incx==1)
|
|
vector(x,*n) *= alpha;
|
|
|
|
vector(x,*n,*incx) *= alpha;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
|
{
|
|
int size = IsComplex ? 2* *n : *n;
|
|
|
|
if(*incx==1 && *incy==1)
|
|
vector(py,size).swap(vector(px,size));
|
|
else
|
|
vector(py,size,*incy).swap(vector(px,size,*incx));
|
|
|
|
return 1;
|
|
}
|
|
|
|
#if !ISCOMPLEX
|
|
|
|
RealScalar EIGEN_BLAS_FUNC(casum)(int *n, RealScalar *px, int *incx)
|
|
{
|
|
Complex* x = reinterpret_cast<Complex*>(px);
|
|
|
|
if(*incx==1)
|
|
return vector(x,*n).cwise().abs().sum();
|
|
else
|
|
return vector(x,*n,*incx).cwise().abs().sum();
|
|
|
|
return 1;
|
|
}
|
|
|
|
#endif // ISCOMPLEX
|