mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
82f0ce2726
This provide several advantages: - more flexibility in designing unit tests - unit tests can be glued to speed up compilation - unit tests are compiled with same predefined macros, which is a requirement for zapcc
82 lines
2.3 KiB
C++
82 lines
2.3 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
template<typename MatrixType> void replicate(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
Replicate.cpp
|
|
*/
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
|
|
typedef Matrix<Scalar, Dynamic, 1> VectorX;
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m2 = MatrixType::Random(rows, cols);
|
|
|
|
VectorType v1 = VectorType::Random(rows);
|
|
|
|
MatrixX x1, x2;
|
|
VectorX vx1;
|
|
|
|
int f1 = internal::random<int>(1,10),
|
|
f2 = internal::random<int>(1,10);
|
|
|
|
x1.resize(rows*f1,cols*f2);
|
|
for(int j=0; j<f2; j++)
|
|
for(int i=0; i<f1; i++)
|
|
x1.block(i*rows,j*cols,rows,cols) = m1;
|
|
VERIFY_IS_APPROX(x1, m1.replicate(f1,f2));
|
|
|
|
x2.resize(2*rows,3*cols);
|
|
x2 << m2, m2, m2,
|
|
m2, m2, m2;
|
|
VERIFY_IS_APPROX(x2, (m2.template replicate<2,3>()));
|
|
|
|
x2.resize(rows,3*cols);
|
|
x2 << m2, m2, m2;
|
|
VERIFY_IS_APPROX(x2, (m2.template replicate<1,3>()));
|
|
|
|
vx1.resize(3*rows,cols);
|
|
vx1 << m2, m2, m2;
|
|
VERIFY_IS_APPROX(vx1+vx1, vx1+(m2.template replicate<3,1>()));
|
|
|
|
vx1=m2+(m2.colwise().replicate(1));
|
|
|
|
if(m2.cols()==1)
|
|
VERIFY_IS_APPROX(m2.coeff(0), (m2.template replicate<3,1>().coeff(m2.rows())));
|
|
|
|
x2.resize(rows,f1);
|
|
for (int j=0; j<f1; ++j)
|
|
x2.col(j) = v1;
|
|
VERIFY_IS_APPROX(x2, v1.rowwise().replicate(f1));
|
|
|
|
vx1.resize(rows*f2);
|
|
for (int j=0; j<f2; ++j)
|
|
vx1.segment(j*rows,rows) = v1;
|
|
VERIFY_IS_APPROX(vx1, v1.colwise().replicate(f2));
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(array_replicate)
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( replicate(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( replicate(Vector2f()) );
|
|
CALL_SUBTEST_3( replicate(Vector3d()) );
|
|
CALL_SUBTEST_4( replicate(Vector4f()) );
|
|
CALL_SUBTEST_5( replicate(VectorXf(16)) );
|
|
CALL_SUBTEST_6( replicate(VectorXcd(10)) );
|
|
}
|
|
}
|