mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
148 lines
5.5 KiB
C++
148 lines
5.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2016
|
|
// Mehdi Goli Codeplay Software Ltd.
|
|
// Ralph Potter Codeplay Software Ltd.
|
|
// Luke Iwanski Codeplay Software Ltd.
|
|
// Contact: <eigen@codeplay.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
#define EIGEN_TEST_NO_COMPLEX
|
|
#define EIGEN_TEST_FUNC cxx11_tensor_broadcast_sycl
|
|
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
|
|
#define EIGEN_USE_SYCL
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::array;
|
|
using Eigen::SyclDevice;
|
|
using Eigen::Tensor;
|
|
using Eigen::TensorMap;
|
|
|
|
template <typename DataType, int DataLayout>
|
|
static void test_broadcast_sycl_fixed(const Eigen::SyclDevice &sycl_device){
|
|
|
|
// BROADCAST test:
|
|
int inDim1=2;
|
|
int inDim2=3;
|
|
int inDim3=5;
|
|
int inDim4=7;
|
|
int bDim1=2;
|
|
int bDim2=3;
|
|
int bDim3=1;
|
|
int bDim4=4;
|
|
array<int, 4> in_range = {{inDim1, inDim2, inDim3, inDim4}};
|
|
array<int, 4> broadcasts = {{bDim1, bDim2, bDim3, bDim4}};
|
|
array<int, 4> out_range; // = in_range * broadcasts
|
|
for (size_t i = 0; i < out_range.size(); ++i)
|
|
out_range[i] = in_range[i] * broadcasts[i];
|
|
|
|
Tensor<DataType, 4, DataLayout> input(in_range);
|
|
Tensor<DataType, 4, DataLayout> out(out_range);
|
|
|
|
for (size_t i = 0; i < in_range.size(); ++i)
|
|
VERIFY_IS_EQUAL(out.dimension(i), out_range[i]);
|
|
|
|
|
|
for (int i = 0; i < input.size(); ++i)
|
|
input(i) = static_cast<DataType>(i);
|
|
|
|
DataType * gpu_in_data = static_cast<DataType*>(sycl_device.allocate(input.dimensions().TotalSize()*sizeof(DataType)));
|
|
DataType * gpu_out_data = static_cast<DataType*>(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(DataType)));
|
|
|
|
TensorMap<TensorFixedSize<DataType, Sizes<2, 3, 5, 7>, DataLayout>> gpu_in(gpu_in_data, in_range);
|
|
TensorMap<Tensor<DataType, 4, DataLayout>> gpu_out(gpu_out_data, out_range);
|
|
sycl_device.memcpyHostToDevice(gpu_in_data, input.data(),(input.dimensions().TotalSize())*sizeof(DataType));
|
|
gpu_out.device(sycl_device) = gpu_in.broadcast(broadcasts);
|
|
sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(DataType));
|
|
|
|
for (int i = 0; i < inDim1*bDim1; ++i) {
|
|
for (int j = 0; j < inDim2*bDim2; ++j) {
|
|
for (int k = 0; k < inDim3*bDim3; ++k) {
|
|
for (int l = 0; l < inDim4*bDim4; ++l) {
|
|
VERIFY_IS_APPROX(input(i%2,j%3,k%5,l%7), out(i,j,k,l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
printf("Broadcast Test with fixed size Passed\n");
|
|
sycl_device.deallocate(gpu_in_data);
|
|
sycl_device.deallocate(gpu_out_data);
|
|
}
|
|
|
|
template <typename DataType, int DataLayout>
|
|
static void test_broadcast_sycl(const Eigen::SyclDevice &sycl_device){
|
|
|
|
// BROADCAST test:
|
|
int inDim1=2;
|
|
int inDim2=3;
|
|
int inDim3=5;
|
|
int inDim4=7;
|
|
int bDim1=2;
|
|
int bDim2=3;
|
|
int bDim3=1;
|
|
int bDim4=4;
|
|
array<int, 4> in_range = {{inDim1, inDim2, inDim3, inDim4}};
|
|
array<int, 4> broadcasts = {{bDim1, bDim2, bDim3, bDim4}};
|
|
array<int, 4> out_range; // = in_range * broadcasts
|
|
for (size_t i = 0; i < out_range.size(); ++i)
|
|
out_range[i] = in_range[i] * broadcasts[i];
|
|
|
|
Tensor<DataType, 4, DataLayout> input(in_range);
|
|
Tensor<DataType, 4, DataLayout> out(out_range);
|
|
|
|
for (size_t i = 0; i < in_range.size(); ++i)
|
|
VERIFY_IS_EQUAL(out.dimension(i), out_range[i]);
|
|
|
|
|
|
for (int i = 0; i < input.size(); ++i)
|
|
input(i) = static_cast<DataType>(i);
|
|
|
|
DataType * gpu_in_data = static_cast<DataType*>(sycl_device.allocate(input.dimensions().TotalSize()*sizeof(DataType)));
|
|
DataType * gpu_out_data = static_cast<DataType*>(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(DataType)));
|
|
|
|
TensorMap<Tensor<DataType, 4, DataLayout>> gpu_in(gpu_in_data, in_range);
|
|
TensorMap<Tensor<DataType, 4, DataLayout>> gpu_out(gpu_out_data, out_range);
|
|
sycl_device.memcpyHostToDevice(gpu_in_data, input.data(),(input.dimensions().TotalSize())*sizeof(DataType));
|
|
gpu_out.device(sycl_device) = gpu_in.broadcast(broadcasts);
|
|
sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(DataType));
|
|
|
|
for (int i = 0; i < inDim1*bDim1; ++i) {
|
|
for (int j = 0; j < inDim2*bDim2; ++j) {
|
|
for (int k = 0; k < inDim3*bDim3; ++k) {
|
|
for (int l = 0; l < inDim4*bDim4; ++l) {
|
|
VERIFY_IS_APPROX(input(i%inDim1,j%inDim2,k%inDim3,l%inDim4), out(i,j,k,l));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
printf("Broadcast Test Passed\n");
|
|
sycl_device.deallocate(gpu_in_data);
|
|
sycl_device.deallocate(gpu_out_data);
|
|
}
|
|
|
|
template<typename DataType, typename dev_Selector> void sycl_broadcast_test_per_device(dev_Selector s){
|
|
QueueInterface queueInterface(s);
|
|
auto sycl_device = Eigen::SyclDevice(&queueInterface);
|
|
test_broadcast_sycl_fixed<DataType, RowMajor>(sycl_device);
|
|
test_broadcast_sycl<DataType, RowMajor>(sycl_device);
|
|
test_broadcast_sycl_fixed<DataType, ColMajor>(sycl_device);
|
|
test_broadcast_sycl<DataType, ColMajor>(sycl_device);
|
|
}
|
|
|
|
void test_cxx11_tensor_broadcast_sycl() {
|
|
printf("Test on GPU: OpenCL\n");
|
|
CALL_SUBTEST(sycl_broadcast_test_per_device<float>((cl::sycl::gpu_selector())));
|
|
printf("repeating the test on CPU: OpenCL\n");
|
|
CALL_SUBTEST(sycl_broadcast_test_per_device<float>((cl::sycl::cpu_selector())));
|
|
printf("repeating the test on CPU: HOST\n");
|
|
CALL_SUBTEST(sycl_broadcast_test_per_device<float>((cl::sycl::host_selector())));
|
|
printf("Test Passed******************\n" );
|
|
}
|