mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
169 lines
6.1 KiB
C++
169 lines
6.1 KiB
C++
#define EIGEN_USE_THREADS
|
|
|
|
#include <string>
|
|
|
|
#include "tensor_benchmarks.h"
|
|
|
|
#define CREATE_THREAD_POOL(threads) \
|
|
Eigen::ThreadPool pool(threads); \
|
|
Eigen::ThreadPoolDevice device(&pool, threads);
|
|
|
|
// Simple functions
|
|
#define BM_FuncCPU(FUNC, THREADS) \
|
|
static void BM_##FUNC##_##THREADS##T(int iters, int N) { \
|
|
StopBenchmarkTiming(); \
|
|
CREATE_THREAD_POOL(THREADS); \
|
|
BenchmarkSuite<Eigen::ThreadPoolDevice, float> suite(device, N); \
|
|
suite.FUNC(iters); \
|
|
} \
|
|
BENCHMARK_RANGE(BM_##FUNC##_##THREADS##T, 10, 5000);
|
|
|
|
BM_FuncCPU(memcpy, 4);
|
|
BM_FuncCPU(memcpy, 8);
|
|
BM_FuncCPU(memcpy, 12);
|
|
|
|
BM_FuncCPU(typeCasting, 4);
|
|
BM_FuncCPU(typeCasting, 8);
|
|
BM_FuncCPU(typeCasting, 12);
|
|
|
|
BM_FuncCPU(random, 4);
|
|
BM_FuncCPU(random, 8);
|
|
BM_FuncCPU(random, 12);
|
|
|
|
BM_FuncCPU(slicing, 4);
|
|
BM_FuncCPU(slicing, 8);
|
|
BM_FuncCPU(slicing, 12);
|
|
|
|
BM_FuncCPU(rowChip, 4);
|
|
BM_FuncCPU(rowChip, 8);
|
|
BM_FuncCPU(rowChip, 12);
|
|
|
|
BM_FuncCPU(colChip, 4);
|
|
BM_FuncCPU(colChip, 8);
|
|
BM_FuncCPU(colChip, 12);
|
|
|
|
BM_FuncCPU(shuffling, 4);
|
|
BM_FuncCPU(shuffling, 8);
|
|
BM_FuncCPU(shuffling, 12);
|
|
|
|
BM_FuncCPU(padding, 4);
|
|
BM_FuncCPU(padding, 8);
|
|
BM_FuncCPU(padding, 12);
|
|
|
|
BM_FuncCPU(striding, 4);
|
|
BM_FuncCPU(striding, 8);
|
|
BM_FuncCPU(striding, 12);
|
|
|
|
BM_FuncCPU(broadcasting, 4);
|
|
BM_FuncCPU(broadcasting, 8);
|
|
BM_FuncCPU(broadcasting, 12);
|
|
|
|
BM_FuncCPU(coeffWiseOp, 4);
|
|
BM_FuncCPU(coeffWiseOp, 8);
|
|
BM_FuncCPU(coeffWiseOp, 12);
|
|
|
|
BM_FuncCPU(algebraicFunc, 4);
|
|
BM_FuncCPU(algebraicFunc, 8);
|
|
BM_FuncCPU(algebraicFunc, 12);
|
|
|
|
BM_FuncCPU(transcendentalFunc, 4);
|
|
BM_FuncCPU(transcendentalFunc, 8);
|
|
BM_FuncCPU(transcendentalFunc, 12);
|
|
|
|
BM_FuncCPU(rowReduction, 4);
|
|
BM_FuncCPU(rowReduction, 8);
|
|
BM_FuncCPU(rowReduction, 12);
|
|
|
|
BM_FuncCPU(colReduction, 4);
|
|
BM_FuncCPU(colReduction, 8);
|
|
BM_FuncCPU(colReduction, 12);
|
|
|
|
|
|
// Contractions
|
|
#define BM_FuncWithInputDimsCPU(FUNC, D1, D2, D3, THREADS) \
|
|
static void BM_##FUNC##_##D1##x##D2##x##D3##_##THREADS##T(int iters, int N) { \
|
|
StopBenchmarkTiming(); \
|
|
if (THREADS == 1) { \
|
|
Eigen::DefaultDevice device; \
|
|
BenchmarkSuite<Eigen::DefaultDevice, float> suite(device, D1, D2, D3); \
|
|
suite.FUNC(iters); \
|
|
} else { \
|
|
CREATE_THREAD_POOL(THREADS); \
|
|
BenchmarkSuite<Eigen::ThreadPoolDevice, float> suite(device, D1, D2, D3); \
|
|
suite.FUNC(iters); \
|
|
} \
|
|
} \
|
|
BENCHMARK_RANGE(BM_##FUNC##_##D1##x##D2##x##D3##_##THREADS##T, 10, 5000);
|
|
|
|
|
|
BM_FuncWithInputDimsCPU(contraction, N, N, N, 1);
|
|
BM_FuncWithInputDimsCPU(contraction, N, N, N, 4);
|
|
BM_FuncWithInputDimsCPU(contraction, N, N, N, 8);
|
|
BM_FuncWithInputDimsCPU(contraction, N, N, N, 12);
|
|
BM_FuncWithInputDimsCPU(contraction, N, N, N, 16);
|
|
|
|
BM_FuncWithInputDimsCPU(contraction, 64, N, N, 1);
|
|
BM_FuncWithInputDimsCPU(contraction, 64, N, N, 4);
|
|
BM_FuncWithInputDimsCPU(contraction, 64, N, N, 8);
|
|
BM_FuncWithInputDimsCPU(contraction, 64, N, N, 12);
|
|
BM_FuncWithInputDimsCPU(contraction, 64, N, N, 16);
|
|
|
|
BM_FuncWithInputDimsCPU(contraction, N, 64, N, 1);
|
|
BM_FuncWithInputDimsCPU(contraction, N, 64, N, 4);
|
|
BM_FuncWithInputDimsCPU(contraction, N, 64, N, 8);
|
|
BM_FuncWithInputDimsCPU(contraction, N, 64, N, 12);
|
|
BM_FuncWithInputDimsCPU(contraction, N, 64, N, 16);
|
|
|
|
BM_FuncWithInputDimsCPU(contraction, N, N, 64, 1);
|
|
BM_FuncWithInputDimsCPU(contraction, N, N, 64, 4);
|
|
BM_FuncWithInputDimsCPU(contraction, N, N, 64, 8);
|
|
BM_FuncWithInputDimsCPU(contraction, N, N, 64, 12);
|
|
BM_FuncWithInputDimsCPU(contraction, N, N, 64, 16);
|
|
|
|
BM_FuncWithInputDimsCPU(contraction, 1, N, N, 1);
|
|
BM_FuncWithInputDimsCPU(contraction, 1, N, N, 4);
|
|
BM_FuncWithInputDimsCPU(contraction, 1, N, N, 8);
|
|
BM_FuncWithInputDimsCPU(contraction, 1, N, N, 12);
|
|
BM_FuncWithInputDimsCPU(contraction, 1, N, N, 16);
|
|
|
|
BM_FuncWithInputDimsCPU(contraction, N, N, 1, 1);
|
|
BM_FuncWithInputDimsCPU(contraction, N, N, 1, 4);
|
|
BM_FuncWithInputDimsCPU(contraction, N, N, 1, 8);
|
|
BM_FuncWithInputDimsCPU(contraction, N, N, 1, 12);
|
|
BM_FuncWithInputDimsCPU(contraction, N, N, 1, 16);
|
|
|
|
|
|
// Convolutions
|
|
#define BM_FuncWithKernelDimsCPU(FUNC, DIM1, DIM2, THREADS) \
|
|
static void BM_##FUNC##_##DIM1##x##DIM2##_##THREADS##T(int iters, int N) { \
|
|
StopBenchmarkTiming(); \
|
|
CREATE_THREAD_POOL(THREADS); \
|
|
BenchmarkSuite<Eigen::ThreadPoolDevice, float> suite(device, N); \
|
|
suite.FUNC(iters, DIM1, DIM2); \
|
|
} \
|
|
BENCHMARK_RANGE(BM_##FUNC##_##DIM1##x##DIM2##_##THREADS##T, 128, 5000);
|
|
|
|
BM_FuncWithKernelDimsCPU(convolution, 7, 1, 4);
|
|
BM_FuncWithKernelDimsCPU(convolution, 7, 1, 8);
|
|
BM_FuncWithKernelDimsCPU(convolution, 7, 1, 12);
|
|
|
|
BM_FuncWithKernelDimsCPU(convolution, 1, 7, 4);
|
|
BM_FuncWithKernelDimsCPU(convolution, 1, 7, 8);
|
|
BM_FuncWithKernelDimsCPU(convolution, 1, 7, 12);
|
|
|
|
BM_FuncWithKernelDimsCPU(convolution, 7, 4, 4);
|
|
BM_FuncWithKernelDimsCPU(convolution, 7, 4, 8);
|
|
BM_FuncWithKernelDimsCPU(convolution, 7, 4, 12);
|
|
|
|
BM_FuncWithKernelDimsCPU(convolution, 4, 7, 4);
|
|
BM_FuncWithKernelDimsCPU(convolution, 4, 7, 8);
|
|
BM_FuncWithKernelDimsCPU(convolution, 4, 7, 12);
|
|
|
|
BM_FuncWithKernelDimsCPU(convolution, 7, 64, 4);
|
|
BM_FuncWithKernelDimsCPU(convolution, 7, 64, 8);
|
|
BM_FuncWithKernelDimsCPU(convolution, 7, 64, 12);
|
|
|
|
BM_FuncWithKernelDimsCPU(convolution, 64, 7, 4);
|
|
BM_FuncWithKernelDimsCPU(convolution, 64, 7, 8);
|
|
BM_FuncWithKernelDimsCPU(convolution, 64, 7, 12);
|