mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-24 14:45:14 +08:00
15e53d5d93
This changeset also includes: * add HouseholderSequence::conjugateIf * define int as the StorageIndex type for all dense solvers * dedicated unit tests, including assertion checking * _check_solve_assertion(): this method can be implemented in derived solver classes to implement custom checks * CompleteOrthogonalDecompositions: add applyZOnTheLeftInPlace, fix scalar type in applyZAdjointOnTheLeftInPlace(), add missing assertions * Cholesky: add missing assertions * FullPivHouseholderQR: Corrected Scalar type in _solve_impl() * BDCSVD: Unambiguous return type for ternary operator * SVDBase: Corrected Scalar type in _solve_impl()
131 lines
4.6 KiB
C++
131 lines
4.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/QR>
|
|
#include "solverbase.h"
|
|
|
|
template<typename MatrixType> void qr(const MatrixType& m)
|
|
{
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
|
|
|
|
MatrixType a = MatrixType::Random(rows,cols);
|
|
HouseholderQR<MatrixType> qrOfA(a);
|
|
|
|
MatrixQType q = qrOfA.householderQ();
|
|
VERIFY_IS_UNITARY(q);
|
|
|
|
MatrixType r = qrOfA.matrixQR().template triangularView<Upper>();
|
|
VERIFY_IS_APPROX(a, qrOfA.householderQ() * r);
|
|
}
|
|
|
|
template<typename MatrixType, int Cols2> void qr_fixedsize()
|
|
{
|
|
enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
Matrix<Scalar,Rows,Cols> m1 = Matrix<Scalar,Rows,Cols>::Random();
|
|
HouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1);
|
|
|
|
Matrix<Scalar,Rows,Cols> r = qr.matrixQR();
|
|
// FIXME need better way to construct trapezoid
|
|
for(int i = 0; i < Rows; i++) for(int j = 0; j < Cols; j++) if(i>j) r(i,j) = Scalar(0);
|
|
|
|
VERIFY_IS_APPROX(m1, qr.householderQ() * r);
|
|
|
|
check_solverbase<Matrix<Scalar,Cols,Cols2>, Matrix<Scalar,Rows,Cols2> >(m1, qr, Rows, Cols, Cols2);
|
|
}
|
|
|
|
template<typename MatrixType> void qr_invertible()
|
|
{
|
|
using std::log;
|
|
using std::abs;
|
|
using std::pow;
|
|
using std::max;
|
|
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
|
|
STATIC_CHECK(( internal::is_same<typename HouseholderQR<MatrixType>::StorageIndex,int>::value ));
|
|
|
|
int size = internal::random<int>(10,50);
|
|
|
|
MatrixType m1(size, size), m2(size, size), m3(size, size);
|
|
m1 = MatrixType::Random(size,size);
|
|
|
|
if (internal::is_same<RealScalar,float>::value)
|
|
{
|
|
// let's build a matrix more stable to inverse
|
|
MatrixType a = MatrixType::Random(size,size*4);
|
|
m1 += a * a.adjoint();
|
|
}
|
|
|
|
HouseholderQR<MatrixType> qr(m1);
|
|
|
|
check_solverbase<MatrixType, MatrixType>(m1, qr, size, size, size);
|
|
|
|
// now construct a matrix with prescribed determinant
|
|
m1.setZero();
|
|
for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
|
|
RealScalar absdet = abs(m1.diagonal().prod());
|
|
m3 = qr.householderQ(); // get a unitary
|
|
m1 = m3 * m1 * m3;
|
|
qr.compute(m1);
|
|
VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
|
|
// This test is tricky if the determinant becomes too small.
|
|
// Since we generate random numbers with magnitude range [0,1], the average determinant is 0.5^size
|
|
VERIFY_IS_MUCH_SMALLER_THAN( abs(absdet-qr.absDeterminant()), numext::maxi(RealScalar(pow(0.5,size)),numext::maxi<RealScalar>(abs(absdet),abs(qr.absDeterminant()))) );
|
|
|
|
}
|
|
|
|
template<typename MatrixType> void qr_verify_assert()
|
|
{
|
|
MatrixType tmp;
|
|
|
|
HouseholderQR<MatrixType> qr;
|
|
VERIFY_RAISES_ASSERT(qr.matrixQR())
|
|
VERIFY_RAISES_ASSERT(qr.solve(tmp))
|
|
VERIFY_RAISES_ASSERT(qr.transpose().solve(tmp))
|
|
VERIFY_RAISES_ASSERT(qr.adjoint().solve(tmp))
|
|
VERIFY_RAISES_ASSERT(qr.householderQ())
|
|
VERIFY_RAISES_ASSERT(qr.absDeterminant())
|
|
VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(qr)
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( qr(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
CALL_SUBTEST_2( qr(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2),internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
|
|
CALL_SUBTEST_3(( qr_fixedsize<Matrix<float,3,4>, 2 >() ));
|
|
CALL_SUBTEST_4(( qr_fixedsize<Matrix<double,6,2>, 4 >() ));
|
|
CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,2,5>, 7 >() ));
|
|
CALL_SUBTEST_11( qr(Matrix<float,1,1>()) );
|
|
}
|
|
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
|
|
CALL_SUBTEST_6( qr_invertible<MatrixXd>() );
|
|
CALL_SUBTEST_7( qr_invertible<MatrixXcf>() );
|
|
CALL_SUBTEST_8( qr_invertible<MatrixXcd>() );
|
|
}
|
|
|
|
CALL_SUBTEST_9(qr_verify_assert<Matrix3f>());
|
|
CALL_SUBTEST_10(qr_verify_assert<Matrix3d>());
|
|
CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
|
|
CALL_SUBTEST_6(qr_verify_assert<MatrixXd>());
|
|
CALL_SUBTEST_7(qr_verify_assert<MatrixXcf>());
|
|
CALL_SUBTEST_8(qr_verify_assert<MatrixXcd>());
|
|
|
|
// Test problem size constructors
|
|
CALL_SUBTEST_12(HouseholderQR<MatrixXf>(10, 20));
|
|
}
|