mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
04dc63776a
- write extentive unit tests (maybe this already exist in other projects) - the level2 functions still have to be implemented
366 lines
20 KiB
C
366 lines
20 KiB
C
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "common.h"
|
|
|
|
int EIGEN_BLAS_FUNC(gemm)(char *opa, char *opb, int *m, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
|
{
|
|
typedef void (*functype)(int, int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar);
|
|
functype func[12];
|
|
|
|
static bool init = false;
|
|
if(!init)
|
|
{
|
|
for(int k=0; k<12; ++k)
|
|
func[k] = 0;
|
|
func[NOTR | (NOTR << 2)] = (ei_general_matrix_matrix_product<Scalar,ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (NOTR << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[ADJ | (NOTR << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
|
func[NOTR | (TR << 2)] = (ei_general_matrix_matrix_product<Scalar,ColMajor,false,RowMajor,false,ColMajor>::run);
|
|
func[TR | (TR << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,false,RowMajor,false,ColMajor>::run);
|
|
func[ADJ | (TR << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,Conj, RowMajor,false,ColMajor>::run);
|
|
func[NOTR | (ADJ << 2)] = (ei_general_matrix_matrix_product<Scalar,ColMajor,false,RowMajor,Conj, ColMajor>::run);
|
|
func[TR | (ADJ << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,false,RowMajor,Conj, ColMajor>::run);
|
|
func[ADJ | (ADJ << 2)] = (ei_general_matrix_matrix_product<Scalar,RowMajor,Conj, RowMajor,Conj, ColMajor>::run);
|
|
init = true;
|
|
}
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
|
|
|
if(beta!=Scalar(1))
|
|
matrix(c, *m, *n, *ldc) *= beta;
|
|
|
|
int code = OP(*opa) | (OP(*opb) << 2);
|
|
if(code>=12 || func[code]==0)
|
|
return 0;
|
|
|
|
func[code](*m, *n, *k, a, *lda, b, *ldb, c, *ldc, alpha);
|
|
return 1;
|
|
}
|
|
|
|
int EIGEN_BLAS_FUNC(trsm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb)
|
|
{
|
|
typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int);
|
|
functype func[32];
|
|
|
|
static bool init = false;
|
|
if(!init)
|
|
{
|
|
for(int k=0; k<32; ++k)
|
|
func[k] = 0;
|
|
|
|
func[NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, UpperTriangular|0, false,ColMajor,ColMajor>::run);
|
|
func[TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, UpperTriangular|0, false,RowMajor,ColMajor>::run);
|
|
func[ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, UpperTriangular|0, Conj, RowMajor,ColMajor>::run);
|
|
|
|
func[NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,UpperTriangular|0, false,ColMajor,ColMajor>::run);
|
|
func[TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,UpperTriangular|0, false,RowMajor,ColMajor>::run);
|
|
func[ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,UpperTriangular|0, Conj, RowMajor,ColMajor>::run);
|
|
|
|
func[NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, LowerTriangular|0, false,ColMajor,ColMajor>::run);
|
|
func[TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, LowerTriangular|0, false,RowMajor,ColMajor>::run);
|
|
func[ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, LowerTriangular|0, Conj, RowMajor,ColMajor>::run);
|
|
|
|
func[NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,LowerTriangular|0, false,ColMajor,ColMajor>::run);
|
|
func[TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,LowerTriangular|0, false,RowMajor,ColMajor>::run);
|
|
func[ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,LowerTriangular|0, Conj, RowMajor,ColMajor>::run);
|
|
|
|
|
|
func[NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, UpperTriangular|UnitDiagBit,false,ColMajor,ColMajor>::run);
|
|
func[TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, UpperTriangular|UnitDiagBit,false,RowMajor,ColMajor>::run);
|
|
func[ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, UpperTriangular|UnitDiagBit,Conj, RowMajor,ColMajor>::run);
|
|
|
|
func[NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,UpperTriangular|UnitDiagBit,false,ColMajor,ColMajor>::run);
|
|
func[TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,UpperTriangular|UnitDiagBit,false,RowMajor,ColMajor>::run);
|
|
func[ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,UpperTriangular|UnitDiagBit,Conj, RowMajor,ColMajor>::run);
|
|
|
|
func[NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, LowerTriangular|UnitDiagBit,false,ColMajor,ColMajor>::run);
|
|
func[TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, LowerTriangular|UnitDiagBit,false,RowMajor,ColMajor>::run);
|
|
func[ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheLeft, LowerTriangular|UnitDiagBit,Conj, RowMajor,ColMajor>::run);
|
|
|
|
func[NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,LowerTriangular|UnitDiagBit,false,ColMajor,ColMajor>::run);
|
|
func[TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,LowerTriangular|UnitDiagBit,false,RowMajor,ColMajor>::run);
|
|
func[ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_triangular_solve_matrix<Scalar,OnTheRight,LowerTriangular|UnitDiagBit,Conj, RowMajor,ColMajor>::run);
|
|
|
|
init = true;
|
|
}
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
// TODO handle alpha
|
|
|
|
int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4);
|
|
if(code>=32 || func[code]==0)
|
|
return 0;
|
|
|
|
func[code](*m, *n, a, *lda, b, *ldb);
|
|
return 1;
|
|
}
|
|
|
|
|
|
// b = alpha*op(a)*b for side = 'L'or'l'
|
|
// b = alpha*b*op(a) for side = 'R'or'r'
|
|
int EIGEN_BLAS_FUNC(trmm)(char *side, char *uplo, char *opa, char *diag, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb)
|
|
{
|
|
typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar);
|
|
functype func[32];
|
|
|
|
static bool init = false;
|
|
if(!init)
|
|
{
|
|
for(int k=0; k<32; ++k)
|
|
func[k] = 0;
|
|
|
|
func[NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,UpperTriangular|0, true, ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,UpperTriangular|0, true, RowMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,UpperTriangular|0, true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
|
|
|
func[NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,UpperTriangular|0, false,ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,UpperTriangular|0, false,ColMajor,false,RowMajor,false,ColMajor>::run);
|
|
func[ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,UpperTriangular|0, false,ColMajor,false,RowMajor,Conj, ColMajor>::run);
|
|
|
|
func[NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,LowerTriangular|0, true, ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,LowerTriangular|0, true, RowMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,LowerTriangular|0, true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
|
|
|
func[NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,LowerTriangular|0, false,ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,LowerTriangular|0, false,ColMajor,false,RowMajor,false,ColMajor>::run);
|
|
func[ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,LowerTriangular|0, false,ColMajor,false,RowMajor,Conj, ColMajor>::run);
|
|
|
|
func[NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,UpperTriangular|UnitDiagBit,true, ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,UpperTriangular|UnitDiagBit,true, RowMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,UpperTriangular|UnitDiagBit,true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
|
|
|
func[NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,UpperTriangular|UnitDiagBit,false,ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,UpperTriangular|UnitDiagBit,false,ColMajor,false,RowMajor,false,ColMajor>::run);
|
|
func[ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,UpperTriangular|UnitDiagBit,false,ColMajor,false,RowMajor,Conj, ColMajor>::run);
|
|
|
|
func[NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,LowerTriangular|UnitDiagBit,true, ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,LowerTriangular|UnitDiagBit,true, RowMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,LowerTriangular|UnitDiagBit,true, RowMajor,Conj, ColMajor,false,ColMajor>::run);
|
|
|
|
func[NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,LowerTriangular|UnitDiagBit,false,ColMajor,false,ColMajor,false,ColMajor>::run);
|
|
func[TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,LowerTriangular|UnitDiagBit,false,ColMajor,false,RowMajor,false,ColMajor>::run);
|
|
func[ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)] = (ei_product_triangular_matrix_matrix<Scalar,LowerTriangular|UnitDiagBit,false,ColMajor,false,RowMajor,Conj, ColMajor>::run);
|
|
|
|
init = true;
|
|
}
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
|
|
int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4);
|
|
if(code>=32 || func[code]==0)
|
|
return 0;
|
|
|
|
func[code](*m, *n, a, *lda, b, *ldb, b, *ldb, alpha);
|
|
return 1;
|
|
}
|
|
|
|
// c = alpha*a*b + beta*c for side = 'L'or'l'
|
|
// c = alpha*b*a + beta*c for side = 'R'or'r
|
|
int EIGEN_BLAS_FUNC(symm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
|
{
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
|
|
|
if(beta!=Scalar(1))
|
|
matrix(c, *m, *n, *ldc) *= beta;
|
|
|
|
if(SIDE(*side)==LEFT)
|
|
if(UPLO(*uplo)==UP)
|
|
ei_product_selfadjoint_matrix<Scalar, RowMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha);
|
|
else if(UPLO(*uplo)==LO)
|
|
ei_product_selfadjoint_matrix<Scalar, ColMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha);
|
|
else
|
|
return 0;
|
|
else if(SIDE(*side)==RIGHT)
|
|
if(UPLO(*uplo)==UP)
|
|
ei_product_selfadjoint_matrix<Scalar, ColMajor,false,false, RowMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);
|
|
else if(UPLO(*uplo)==LO)
|
|
ei_product_selfadjoint_matrix<Scalar, ColMajor,false,false, ColMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);
|
|
else
|
|
return 0;
|
|
else
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
// c = alpha*a*a' + beta*c for op = 'N'or'n'
|
|
// c = alpha*a'*a + beta*c for op = 'T'or't','C'or'c'
|
|
int EIGEN_BLAS_FUNC(syrk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
|
{
|
|
typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int, Scalar);
|
|
functype func[8];
|
|
|
|
static bool init = false;
|
|
if(!init)
|
|
{
|
|
for(int k=0; k<8; ++k)
|
|
func[k] = 0;
|
|
|
|
func[NOTR | (UP << 2)] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,true, UpperTriangular>::run);
|
|
func[TR | (UP << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,UpperTriangular>::run);
|
|
func[ADJ | (UP << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,UpperTriangular>::run);
|
|
|
|
func[NOTR | (LO << 2)] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,true, LowerTriangular>::run);
|
|
func[TR | (LO << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,LowerTriangular>::run);
|
|
func[ADJ | (LO << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,LowerTriangular>::run);
|
|
|
|
init = true;
|
|
}
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
|
|
|
int code = OP(*op) | (UPLO(*uplo) << 2);
|
|
if(code>=8 || func[code]==0)
|
|
return 0;
|
|
|
|
if(beta!=Scalar(1))
|
|
matrix(c, *n, *n, *ldc) *= beta;
|
|
|
|
func[code](*n, *k, a, *lda, c, *ldc, alpha);
|
|
return 1;
|
|
}
|
|
|
|
// c = alpha*a*b' + alpha*b*a' + beta*c for op = 'N'or'n'
|
|
// c = alpha*a'*b + alpha*b'*a + beta*c for op = 'T'or't'
|
|
int EIGEN_BLAS_FUNC(syr2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
|
{
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
|
|
|
// TODO
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
#if ISCOMPLEX
|
|
|
|
// c = alpha*a*b + beta*c for side = 'L'or'l'
|
|
// c = alpha*b*a + beta*c for side = 'R'or'r
|
|
int EIGEN_BLAS_FUNC(hemm)(char *side, char *uplo, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
|
{
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
|
|
|
if(beta!=Scalar(1))
|
|
matrix(c, *m, *n, *ldc) *= beta;
|
|
|
|
if(SIDE(*side)==LEFT)
|
|
if(UPLO(*uplo)==UP)
|
|
ei_product_selfadjoint_matrix<Scalar, RowMajor,true,Conj, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha);
|
|
else if(UPLO(*uplo)==LO)
|
|
ei_product_selfadjoint_matrix<Scalar, ColMajor,true,false, ColMajor,false,false, ColMajor>::run(*m, *n, a, *lda, b, *ldb, c, *ldc, alpha);
|
|
else
|
|
return 0;
|
|
else if(SIDE(*side)==RIGHT)
|
|
if(UPLO(*uplo)==UP)
|
|
ei_product_selfadjoint_matrix<Scalar, ColMajor,false,false, RowMajor,true,Conj, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);
|
|
else if(UPLO(*uplo)==LO)
|
|
ei_product_selfadjoint_matrix<Scalar, ColMajor,false,false, ColMajor,true,false, ColMajor>::run(*m, *n, b, *ldb, a, *lda, c, *ldc, alpha);
|
|
else
|
|
return 0;
|
|
else
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
// c = alpha*a*conj(a') + beta*c for op = 'N'or'n'
|
|
// c = alpha*conj(a')*a + beta*c for op = 'C'or'c'
|
|
int EIGEN_BLAS_FUNC(herk)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
|
{
|
|
typedef void (*functype)(int, int, const Scalar *, int, Scalar *, int, Scalar);
|
|
functype func[8];
|
|
|
|
static bool init = false;
|
|
if(!init)
|
|
{
|
|
for(int k=0; k<8; ++k)
|
|
func[k] = 0;
|
|
|
|
func[NOTR | (UP << 2)] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,true, UpperTriangular>::run);
|
|
func[ADJ | (UP << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,UpperTriangular>::run);
|
|
|
|
func[NOTR | (LO << 2)] = (ei_selfadjoint_product<Scalar,ColMajor,ColMajor,true, LowerTriangular>::run);
|
|
func[ADJ | (LO << 2)] = (ei_selfadjoint_product<Scalar,RowMajor,ColMajor,false,LowerTriangular>::run);
|
|
|
|
init = true;
|
|
}
|
|
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
|
|
|
int code = OP(*op) | (UPLO(*uplo) << 2);
|
|
if(code>=8 || func[code]==0)
|
|
return 0;
|
|
|
|
if(beta!=Scalar(1))
|
|
matrix(c, *n, *n, *ldc) *= beta;
|
|
|
|
func[code](*n, *k, a, *lda, c, *ldc, alpha);
|
|
return 1;
|
|
}
|
|
|
|
// c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c, for op = 'N'or'n'
|
|
// c = alpha*conj(b')*a + conj(alpha)*conj(a')*b + beta*c, for op = 'C'or'c'
|
|
int EIGEN_BLAS_FUNC(her2k)(char *uplo, char *op, int *n, int *k, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *ldb, RealScalar *pbeta, RealScalar *pc, int *ldc)
|
|
{
|
|
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
|
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
|
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
|
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
|
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
|
|
|
|
// TODO
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif // ISCOMPLEX
|