mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
145 lines
5.7 KiB
C++
145 lines
5.7 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
// this hack is needed to make this file compiles with -pedantic (gcc)
|
|
#ifdef __GNUC__
|
|
#define throw(X)
|
|
#endif
|
|
// discard stack allocation as that too bypasses malloc
|
|
#define EIGEN_STACK_ALLOCATION_LIMIT 0
|
|
// any heap allocation will raise an assert
|
|
#define EIGEN_NO_MALLOC
|
|
|
|
#include "main.h"
|
|
#include <Eigen/Cholesky>
|
|
#include <Eigen/Eigenvalues>
|
|
#include <Eigen/LU>
|
|
#include <Eigen/QR>
|
|
#include <Eigen/SVD>
|
|
|
|
template<typename MatrixType> void nomalloc(const MatrixType& m)
|
|
{
|
|
/* this test check no dynamic memory allocation are issued with fixed-size matrices
|
|
*/
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m2 = MatrixType::Random(rows, cols),
|
|
m3(rows, cols),
|
|
mzero = MatrixType::Zero(rows, cols),
|
|
identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
|
|
::Identity(rows, rows),
|
|
square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
|
|
::Random(rows, rows);
|
|
VectorType v1 = VectorType::Random(rows),
|
|
v2 = VectorType::Random(rows),
|
|
vzero = VectorType::Zero(rows);
|
|
|
|
Scalar s1 = ei_random<Scalar>();
|
|
|
|
int r = ei_random<int>(0, rows-1),
|
|
c = ei_random<int>(0, cols-1);
|
|
|
|
VERIFY_IS_APPROX((m1+m2)*s1, s1*m1+s1*m2);
|
|
VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c)));
|
|
VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), (m1.array()*m1.array()).matrix());
|
|
if (MatrixType::RowsAtCompileTime<EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD) {
|
|
// If the matrices are too large, we have better to use the optimized GEMM
|
|
// routines which allocates temporaries. However, on some platforms
|
|
// these temporaries are allocated on the stack using alloca.
|
|
VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2));
|
|
}
|
|
}
|
|
|
|
void ctms_decompositions()
|
|
{
|
|
const int maxSize = 16;
|
|
const int size = 12;
|
|
|
|
typedef Eigen::Matrix<float,
|
|
Eigen::Dynamic, Eigen::Dynamic,
|
|
0,
|
|
maxSize, maxSize> Matrix;
|
|
|
|
typedef Eigen::Matrix<float,
|
|
Eigen::Dynamic, 1,
|
|
0,
|
|
maxSize, 1> Vector;
|
|
|
|
typedef Eigen::Matrix<std::complex<float>,
|
|
Eigen::Dynamic, Eigen::Dynamic,
|
|
0,
|
|
maxSize, maxSize> ComplexMatrix;
|
|
|
|
const Matrix A(Matrix::Random(size, size));
|
|
const ComplexMatrix complexA(ComplexMatrix::Random(size, size));
|
|
// const Matrix saA = A.adjoint() * A; // NOTE: This product allocates on the stack. The two following lines are a kludgy workaround
|
|
Matrix saA(Matrix::Constant(size, size, 1.0));
|
|
saA.diagonal().setConstant(2.0);
|
|
|
|
// Cholesky module
|
|
Eigen::LLT<Matrix> LLT; LLT.compute(A);
|
|
Eigen::LDLT<Matrix> LDLT; LDLT.compute(A);
|
|
|
|
// Eigenvalues module
|
|
Eigen::HessenbergDecomposition<ComplexMatrix> hessDecomp; hessDecomp.compute(complexA);
|
|
Eigen::ComplexSchur<ComplexMatrix> cSchur(size); cSchur.compute(complexA);
|
|
Eigen::ComplexEigenSolver<ComplexMatrix> cEigSolver; //cEigSolver.compute(complexA); // NOTE: Commented-out because makes test fail (L135 of ComplexEigenSolver.h has a product that allocates on the stack)
|
|
Eigen::EigenSolver<Matrix> eigSolver; eigSolver.compute(A);
|
|
Eigen::SelfAdjointEigenSolver<Matrix> saEigSolver(size); saEigSolver.compute(saA);
|
|
Eigen::Tridiagonalization<Matrix> tridiag; tridiag.compute(saA);
|
|
|
|
// LU module
|
|
Eigen::PartialPivLU<Matrix> ppLU; ppLU.compute(A);
|
|
Eigen::FullPivLU<Matrix> fpLU; fpLU.compute(A);
|
|
|
|
// QR module
|
|
Eigen::HouseholderQR<Matrix> hQR; hQR.compute(A);
|
|
Eigen::ColPivHouseholderQR<Matrix> cpQR; cpQR.compute(A);
|
|
Eigen::FullPivHouseholderQR<Matrix> fpQR; fpQR.compute(A);
|
|
|
|
// SVD module
|
|
Eigen::JacobiSVD<Matrix> jSVD; jSVD.compute(A);
|
|
Eigen::SVD<Matrix> svd; svd.compute(A);
|
|
}
|
|
|
|
void test_nomalloc()
|
|
{
|
|
// check that our operator new is indeed called:
|
|
VERIFY_RAISES_ASSERT(MatrixXd dummy = MatrixXd::Random(3,3));
|
|
CALL_SUBTEST_1(nomalloc(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2(nomalloc(Matrix4d()) );
|
|
CALL_SUBTEST_3(nomalloc(Matrix<float,32,32>()) );
|
|
|
|
// Check decomposition modules with dynamic matrices that have a known compile-time max size (ctms)
|
|
CALL_SUBTEST_4(ctms_decompositions());
|
|
|
|
}
|