eigen/test/basicstuff.cpp

215 lines
8.0 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#define EIGEN_NO_STATIC_ASSERT
#include "main.h"
template<typename MatrixType> void basicStuff(const MatrixType& m)
{
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
Index rows = m.rows();
Index cols = m.cols();
// this test relies a lot on Random.h, and there's not much more that we can do
// to test it, hence I consider that we will have tested Random.h
MatrixType m1 = MatrixType::Random(rows, cols),
m2 = MatrixType::Random(rows, cols),
m3(rows, cols),
mzero = MatrixType::Zero(rows, cols),
identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
::Identity(rows, rows),
square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
VectorType v1 = VectorType::Random(rows),
v2 = VectorType::Random(rows),
vzero = VectorType::Zero(rows);
SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows);
Scalar x = internal::random<Scalar>();
Index r = internal::random<Index>(0, rows-1),
c = internal::random<Index>(0, cols-1);
m1.coeffRef(r,c) = x;
VERIFY_IS_APPROX(x, m1.coeff(r,c));
m1(r,c) = x;
VERIFY_IS_APPROX(x, m1(r,c));
v1.coeffRef(r) = x;
VERIFY_IS_APPROX(x, v1.coeff(r));
v1(r) = x;
VERIFY_IS_APPROX(x, v1(r));
v1[r] = x;
VERIFY_IS_APPROX(x, v1[r]);
VERIFY_IS_APPROX( v1, v1);
VERIFY_IS_NOT_APPROX( v1, 2*v1);
VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1);
if(!NumTraits<Scalar>::IsInteger)
VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.norm());
VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1);
VERIFY_IS_APPROX( vzero, v1-v1);
VERIFY_IS_APPROX( m1, m1);
VERIFY_IS_NOT_APPROX( m1, 2*m1);
VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1);
VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1);
VERIFY_IS_APPROX( mzero, m1-m1);
// always test operator() on each read-only expression class,
// in order to check const-qualifiers.
// indeed, if an expression class (here Zero) is meant to be read-only,
// hence has no _write() method, the corresponding MatrixBase method (here zero())
// should return a const-qualified object so that it is the const-qualified
// operator() that gets called, which in turn calls _read().
VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
// now test copying a row-vector into a (column-)vector and conversely.
square.col(r) = square.row(r).eval();
Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
rv = square.row(r);
cv = square.col(r);
VERIFY_IS_APPROX(rv, cv.transpose());
if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
{
VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
}
if(cols!=1 && rows!=1)
{
VERIFY_RAISES_ASSERT(m1[0]);
VERIFY_RAISES_ASSERT((m1+m1)[0]);
}
VERIFY_IS_APPROX(m3 = m1,m1);
MatrixType m4;
VERIFY_IS_APPROX(m4 = m1,m1);
m3.real() = m1.real();
VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());
// check == / != operators
VERIFY(m1==m1);
VERIFY(m1!=m2);
VERIFY(!(m1==m2));
VERIFY(!(m1!=m1));
m1 = m2;
VERIFY(m1==m2);
VERIFY(!(m1!=m2));
// check automatic transposition
sm2.setZero();
for(typename MatrixType::Index i=0;i<rows;++i)
sm2.col(i) = sm1.row(i);
VERIFY_IS_APPROX(sm2,sm1.transpose());
sm2.setZero();
for(typename MatrixType::Index i=0;i<rows;++i)
sm2.col(i).noalias() = sm1.row(i);
VERIFY_IS_APPROX(sm2,sm1.transpose());
sm2.setZero();
for(typename MatrixType::Index i=0;i<rows;++i)
sm2.col(i).noalias() += sm1.row(i);
VERIFY_IS_APPROX(sm2,sm1.transpose());
sm2.setZero();
for(typename MatrixType::Index i=0;i<rows;++i)
sm2.col(i).noalias() -= sm1.row(i);
VERIFY_IS_APPROX(sm2,-sm1.transpose());
}
template<typename MatrixType> void basicStuffComplex(const MatrixType& m)
{
typedef typename MatrixType::Index Index;
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
Index rows = m.rows();
Index cols = m.cols();
Scalar s1 = internal::random<Scalar>(),
s2 = internal::random<Scalar>();
VERIFY(internal::real(s1)==internal::real_ref(s1));
VERIFY(internal::imag(s1)==internal::imag_ref(s1));
internal::real_ref(s1) = internal::real(s2);
internal::imag_ref(s1) = internal::imag(s2);
VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon()));
// extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed.
RealMatrixType rm1 = RealMatrixType::Random(rows,cols),
rm2 = RealMatrixType::Random(rows,cols);
MatrixType cm(rows,cols);
cm.real() = rm1;
cm.imag() = rm2;
VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
rm1.setZero();
rm2.setZero();
rm1 = cm.real();
rm2 = cm.imag();
VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
cm.real().setZero();
VERIFY(static_cast<const MatrixType&>(cm).real().isZero());
VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero());
}
#ifdef EIGEN_TEST_PART_2
void casting()
{
Matrix4f m = Matrix4f::Random(), m2;
Matrix4d n = m.cast<double>();
VERIFY(m.isApprox(n.cast<float>()));
m2 = m.cast<float>(); // check the specialization when NewType == Type
VERIFY(m.isApprox(m2));
}
#endif
void test_basicstuff()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
CALL_SUBTEST_2( basicStuff(Matrix4d()) );
CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,100), internal::random<int>(1,100))) );
CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,100), internal::random<int>(1,100))) );
CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,100), internal::random<int>(1,100))) );
CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,100),internal::random<int>(1,100))) );
CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,100), internal::random<int>(1,100))) );
CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,100), internal::random<int>(1,100))) );
}
CALL_SUBTEST_2(casting());
}