mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
82f0ce2726
This provide several advantages: - more flexibility in designing unit tests - unit tests can be glued to speed up compilation - unit tests are compiled with same predefined macros, which is a requirement for zapcc
173 lines
5.4 KiB
C++
173 lines
5.4 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
|
|
#include <Eigen/CXX11/Tensor>
|
|
|
|
using Eigen::Tensor;
|
|
|
|
template<int DataLayout>
|
|
static void test_simple_patch()
|
|
{
|
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
|
tensor.setRandom();
|
|
array<ptrdiff_t, 4> patch_dims;
|
|
|
|
patch_dims[0] = 1;
|
|
patch_dims[1] = 1;
|
|
patch_dims[2] = 1;
|
|
patch_dims[3] = 1;
|
|
|
|
Tensor<float, 5, DataLayout> no_patch;
|
|
no_patch = tensor.extract_patches(patch_dims);
|
|
|
|
if (DataLayout == ColMajor) {
|
|
VERIFY_IS_EQUAL(no_patch.dimension(0), 1);
|
|
VERIFY_IS_EQUAL(no_patch.dimension(1), 1);
|
|
VERIFY_IS_EQUAL(no_patch.dimension(2), 1);
|
|
VERIFY_IS_EQUAL(no_patch.dimension(3), 1);
|
|
VERIFY_IS_EQUAL(no_patch.dimension(4), tensor.size());
|
|
} else {
|
|
VERIFY_IS_EQUAL(no_patch.dimension(0), tensor.size());
|
|
VERIFY_IS_EQUAL(no_patch.dimension(1), 1);
|
|
VERIFY_IS_EQUAL(no_patch.dimension(2), 1);
|
|
VERIFY_IS_EQUAL(no_patch.dimension(3), 1);
|
|
VERIFY_IS_EQUAL(no_patch.dimension(4), 1);
|
|
}
|
|
|
|
for (int i = 0; i < tensor.size(); ++i) {
|
|
VERIFY_IS_EQUAL(tensor.data()[i], no_patch.data()[i]);
|
|
}
|
|
|
|
patch_dims[0] = 2;
|
|
patch_dims[1] = 3;
|
|
patch_dims[2] = 5;
|
|
patch_dims[3] = 7;
|
|
Tensor<float, 5, DataLayout> single_patch;
|
|
single_patch = tensor.extract_patches(patch_dims);
|
|
|
|
if (DataLayout == ColMajor) {
|
|
VERIFY_IS_EQUAL(single_patch.dimension(0), 2);
|
|
VERIFY_IS_EQUAL(single_patch.dimension(1), 3);
|
|
VERIFY_IS_EQUAL(single_patch.dimension(2), 5);
|
|
VERIFY_IS_EQUAL(single_patch.dimension(3), 7);
|
|
VERIFY_IS_EQUAL(single_patch.dimension(4), 1);
|
|
} else {
|
|
VERIFY_IS_EQUAL(single_patch.dimension(0), 1);
|
|
VERIFY_IS_EQUAL(single_patch.dimension(1), 2);
|
|
VERIFY_IS_EQUAL(single_patch.dimension(2), 3);
|
|
VERIFY_IS_EQUAL(single_patch.dimension(3), 5);
|
|
VERIFY_IS_EQUAL(single_patch.dimension(4), 7);
|
|
}
|
|
|
|
for (int i = 0; i < tensor.size(); ++i) {
|
|
VERIFY_IS_EQUAL(tensor.data()[i], single_patch.data()[i]);
|
|
}
|
|
|
|
patch_dims[0] = 1;
|
|
patch_dims[1] = 2;
|
|
patch_dims[2] = 2;
|
|
patch_dims[3] = 1;
|
|
Tensor<float, 5, DataLayout> twod_patch;
|
|
twod_patch = tensor.extract_patches(patch_dims);
|
|
|
|
if (DataLayout == ColMajor) {
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(0), 1);
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(1), 2);
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(2), 2);
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(3), 1);
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(4), 2*2*4*7);
|
|
} else {
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(0), 2*2*4*7);
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(1), 1);
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(2), 2);
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(3), 2);
|
|
VERIFY_IS_EQUAL(twod_patch.dimension(4), 1);
|
|
}
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 2; ++j) {
|
|
for (int k = 0; k < 4; ++k) {
|
|
for (int l = 0; l < 7; ++l) {
|
|
int patch_loc;
|
|
if (DataLayout == ColMajor) {
|
|
patch_loc = i + 2 * (j + 2 * (k + 4 * l));
|
|
} else {
|
|
patch_loc = l + 7 * (k + 4 * (j + 2 * i));
|
|
}
|
|
for (int x = 0; x < 2; ++x) {
|
|
for (int y = 0; y < 2; ++y) {
|
|
if (DataLayout == ColMajor) {
|
|
VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l), twod_patch(0,x,y,0,patch_loc));
|
|
} else {
|
|
VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l), twod_patch(patch_loc,0,x,y,0));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
patch_dims[0] = 1;
|
|
patch_dims[1] = 2;
|
|
patch_dims[2] = 3;
|
|
patch_dims[3] = 5;
|
|
Tensor<float, 5, DataLayout> threed_patch;
|
|
threed_patch = tensor.extract_patches(patch_dims);
|
|
|
|
if (DataLayout == ColMajor) {
|
|
VERIFY_IS_EQUAL(threed_patch.dimension(0), 1);
|
|
VERIFY_IS_EQUAL(threed_patch.dimension(1), 2);
|
|
VERIFY_IS_EQUAL(threed_patch.dimension(2), 3);
|
|
VERIFY_IS_EQUAL(threed_patch.dimension(3), 5);
|
|
VERIFY_IS_EQUAL(threed_patch.dimension(4), 2*2*3*3);
|
|
} else {
|
|
VERIFY_IS_EQUAL(threed_patch.dimension(0), 2*2*3*3);
|
|
VERIFY_IS_EQUAL(threed_patch.dimension(1), 1);
|
|
VERIFY_IS_EQUAL(threed_patch.dimension(2), 2);
|
|
VERIFY_IS_EQUAL(threed_patch.dimension(3), 3);
|
|
VERIFY_IS_EQUAL(threed_patch.dimension(4), 5);
|
|
}
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 2; ++j) {
|
|
for (int k = 0; k < 3; ++k) {
|
|
for (int l = 0; l < 3; ++l) {
|
|
int patch_loc;
|
|
if (DataLayout == ColMajor) {
|
|
patch_loc = i + 2 * (j + 2 * (k + 3 * l));
|
|
} else {
|
|
patch_loc = l + 3 * (k + 3 * (j + 2 * i));
|
|
}
|
|
for (int x = 0; x < 2; ++x) {
|
|
for (int y = 0; y < 3; ++y) {
|
|
for (int z = 0; z < 5; ++z) {
|
|
if (DataLayout == ColMajor) {
|
|
VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l+z), threed_patch(0,x,y,z,patch_loc));
|
|
} else {
|
|
VERIFY_IS_EQUAL(tensor(i,j+x,k+y,l+z), threed_patch(patch_loc,0,x,y,z));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_patch)
|
|
{
|
|
CALL_SUBTEST(test_simple_patch<ColMajor>());
|
|
CALL_SUBTEST(test_simple_patch<RowMajor>());
|
|
// CALL_SUBTEST(test_expr_shuffling());
|
|
}
|