eigen/test/geo_transformations.cpp
Gael Guennebaud 736d00ab87 typo
2011-01-28 09:57:35 +01:00

472 lines
16 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
#include <Eigen/Geometry>
#include <Eigen/LU>
#include <Eigen/SVD>
template<typename Scalar, int Mode, int Options> void non_projective_only()
{
/* this test covers the following files:
Cross.h Quaternion.h, Transform.cpp
*/
typedef Matrix<Scalar,2,2> Matrix2;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,4,4> Matrix4;
typedef Matrix<Scalar,2,1> Vector2;
typedef Matrix<Scalar,3,1> Vector3;
typedef Matrix<Scalar,4,1> Vector4;
typedef Quaternion<Scalar> Quaternionx;
typedef AngleAxis<Scalar> AngleAxisx;
typedef Transform<Scalar,2,Mode,Options> Transform2;
typedef Transform<Scalar,3,Mode,Options> Transform3;
typedef Transform<Scalar,2,Isometry,Options> Isometry2;
typedef Transform<Scalar,3,Isometry,Options> Isometry3;
typedef typename Transform3::MatrixType MatrixType;
typedef DiagonalMatrix<Scalar,2> AlignedScaling2;
typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
typedef Translation<Scalar,2> Translation2;
typedef Translation<Scalar,3> Translation3;
Scalar largeEps = test_precision<Scalar>();
if (internal::is_same<Scalar,float>::value)
largeEps = 1e-2f;
Vector3 v0 = Vector3::Random(),
v1 = Vector3::Random();
Transform3 t0, t1, t2;
Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
Quaternionx q1, q2;
q1 = AngleAxisx(a, v0.normalized());
t0 = Transform3::Identity();
VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
t0.linear() = q1.toRotationMatrix();
v0 << 50, 2, 1;
t0.scale(v0);
VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).template head<3>().norm(), v0.x());
t0.setIdentity();
t1.setIdentity();
v1 << 1, 2, 3;
t0.linear() = q1.toRotationMatrix();
t0.pretranslate(v0);
t0.scale(v1);
t1.linear() = q1.conjugate().toRotationMatrix();
t1.prescale(v1.cwiseInverse());
t1.translate(-v0);
VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
t1.fromPositionOrientationScale(v0, q1, v1);
VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
VERIFY_IS_APPROX(t1*v1, t0*v1);
// translation * vector
t0.setIdentity();
t0.translate(v0);
VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1);
// AlignedScaling * vector
t0.setIdentity();
t0.scale(v0);
VERIFY_IS_APPROX((t0 * v1).template head<3>(), AlignedScaling3(v0) * v1);
}
template<typename Scalar, int Mode, int Options> void transformations()
{
/* this test covers the following files:
Cross.h Quaternion.h, Transform.cpp
*/
typedef Matrix<Scalar,2,2> Matrix2;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,4,4> Matrix4;
typedef Matrix<Scalar,2,1> Vector2;
typedef Matrix<Scalar,3,1> Vector3;
typedef Matrix<Scalar,4,1> Vector4;
typedef Quaternion<Scalar> Quaternionx;
typedef AngleAxis<Scalar> AngleAxisx;
typedef Transform<Scalar,2,Mode,Options> Transform2;
typedef Transform<Scalar,3,Mode,Options> Transform3;
typedef Transform<Scalar,2,Isometry,Options> Isometry2;
typedef Transform<Scalar,3,Isometry,Options> Isometry3;
typedef typename Transform3::MatrixType MatrixType;
typedef DiagonalMatrix<Scalar,2> AlignedScaling2;
typedef DiagonalMatrix<Scalar,3> AlignedScaling3;
typedef Translation<Scalar,2> Translation2;
typedef Translation<Scalar,3> Translation3;
Scalar largeEps = test_precision<Scalar>();
if (internal::is_same<Scalar,float>::value)
largeEps = 1e-2f;
Vector3 v0 = Vector3::Random(),
v1 = Vector3::Random(),
v2 = Vector3::Random();
Vector2 u0 = Vector2::Random();
Matrix3 matrot1, m;
Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
Scalar s0 = internal::random<Scalar>();
VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0);
VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0);
VERIFY_IS_APPROX(internal::cos(a)*v0.squaredNorm(), v0.dot(AngleAxisx(a, v0.unitOrthogonal()) * v0));
m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint();
VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized()));
VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m);
Quaternionx q1, q2;
q1 = AngleAxisx(a, v0.normalized());
q2 = AngleAxisx(a, v1.normalized());
// rotation matrix conversion
matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX())
* AngleAxisx(Scalar(0.2), Vector3::UnitY())
* AngleAxisx(Scalar(0.3), Vector3::UnitZ());
VERIFY_IS_APPROX(matrot1 * v1,
AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix()
* (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix()
* (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1)));
// angle-axis conversion
AngleAxisx aa = AngleAxisx(q1);
VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
aa.fromRotationMatrix(aa.toRotationMatrix());
VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
// AngleAxis
VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(),
Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix());
AngleAxisx aa1;
m = q1.toRotationMatrix();
aa1 = m;
VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(),
Quaternionx(m).toRotationMatrix());
// Transform
// TODO complete the tests !
a = 0;
while (internal::abs(a)<Scalar(0.1))
a = internal::random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI));
q1 = AngleAxisx(a, v0.normalized());
Transform3 t0, t1, t2;
// first test setIdentity() and Identity()
t0.setIdentity();
VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
t0.matrix().setZero();
t0 = Transform3::Identity();
VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
t0.setIdentity();
t1.setIdentity();
v1 << 1, 2, 3;
t0.linear() = q1.toRotationMatrix();
t0.pretranslate(v0);
t0.scale(v1);
t1.linear() = q1.conjugate().toRotationMatrix();
t1.prescale(v1.cwiseInverse());
t1.translate(-v0);
VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>()));
t1.fromPositionOrientationScale(v0, q1, v1);
VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix());
t1.setIdentity(); t1.scale(v0).rotate(q1);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix());
VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix());
// More transform constructors, operator=, operator*=
Matrix3 mat3 = Matrix3::Random();
Matrix4 mat4;
mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose();
Transform3 tmat3(mat3), tmat4(mat4);
if(Mode!=int(AffineCompact))
tmat4.matrix()(3,3) = Scalar(1);
VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix());
Scalar a3 = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
Vector3 v3 = Vector3::Random().normalized();
AngleAxisx aa3(a3, v3);
Transform3 t3(aa3);
Transform3 t4;
t4 = aa3;
VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
t4.rotate(AngleAxisx(-a3,v3));
VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
t4 *= aa3;
VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
v3 = Vector3::Random();
Translation3 tv3(v3);
Transform3 t5(tv3);
t4 = tv3;
VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
t4.translate(-v3);
VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
t4 *= tv3;
VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
AlignedScaling3 sv3(v3);
Transform3 t6(sv3);
t4 = sv3;
VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
t4.scale(v3.cwiseInverse());
VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity());
t4 *= sv3;
VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
// matrix * transform
VERIFY_IS_APPROX((t3.matrix()*t4).matrix(), (t3*t4).matrix());
// chained Transform product
VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix());
// check that Transform product doesn't have aliasing problems
t5 = t4;
t5 = t5*t5;
VERIFY_IS_APPROX(t5, t4*t4);
// 2D transformation
Transform2 t20, t21;
Vector2 v20 = Vector2::Random();
Vector2 v21 = Vector2::Random();
for (int k=0; k<2; ++k)
if (internal::abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3);
t21.setIdentity();
t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(),
t21.pretranslate(v20).scale(v21).matrix());
t21.setIdentity();
t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
VERIFY( (t20.fromPositionOrientationScale(v20,a,v21)
* (t21.prescale(v21.cwiseInverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) );
// Transform - new API
// 3D
t0.setIdentity();
t0.rotate(q1).scale(v0).translate(v0);
// mat * aligned scaling and mat * translation
t1 = (Matrix3(q1) * AlignedScaling3(v0)) * Translation3(v0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t1 = (Matrix3(q1) * Scaling(v0)) * Translation3(v0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t1 = (q1 * Scaling(v0)) * Translation3(v0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// mat * transformation and aligned scaling * translation
t1 = Matrix3(q1) * (AlignedScaling3(v0) * Translation3(v0));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.setIdentity();
t0.scale(s0).translate(v0);
t1 = Scaling(s0) * Translation3(v0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.prescale(s0);
t1 = Scaling(s0) * t1;
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0 = t3;
t0.scale(s0);
t1 = t3 * Scaling(s0,s0,s0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.prescale(s0);
t1 = Scaling(s0,s0,s0) * t1;
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.setIdentity();
t0.prerotate(q1).prescale(v0).pretranslate(v0);
// translation * aligned scaling and transformation * mat
t1 = (Translation3(v0) * AlignedScaling3(v0)) * Transform3(q1);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// scaling * mat and translation * mat
t1 = Translation3(v0) * (AlignedScaling3(v0) * Transform3(q1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
t0.setIdentity();
t0.scale(v0).translate(v0).rotate(q1);
// translation * mat and aligned scaling * transformation
t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// transformation * aligned scaling
t0.scale(v0);
t1 *= AlignedScaling3(v0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// transformation * translation
t0.translate(v0);
t1 = t1 * Translation3(v0);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// translation * transformation
t0.pretranslate(v0);
t1 = Translation3(v0) * t1;
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// transform * quaternion
t0.rotate(q1);
t1 = t1 * q1;
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// translation * quaternion
t0.translate(v1).rotate(q1);
t1 = t1 * (Translation3(v1) * q1);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// aligned scaling * quaternion
t0.scale(v1).rotate(q1);
t1 = t1 * (AlignedScaling3(v1) * q1);
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// quaternion * transform
t0.prerotate(q1);
t1 = q1 * t1;
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// quaternion * translation
t0.rotate(q1).translate(v1);
t1 = t1 * (q1 * Translation3(v1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// quaternion * aligned scaling
t0.rotate(q1).scale(v1);
t1 = t1 * (q1 * AlignedScaling3(v1));
VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
// test transform inversion
t0.setIdentity();
t0.translate(v0);
t0.linear().setRandom();
Matrix4 t044 = Matrix4::Zero();
t044(3,3) = 1;
t044.block(0,0,t0.matrix().rows(),4) = t0.matrix();
VERIFY_IS_APPROX(t0.inverse(Affine).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4));
t0.setIdentity();
t0.translate(v0).rotate(q1);
t044 = Matrix4::Zero();
t044(3,3) = 1;
t044.block(0,0,t0.matrix().rows(),4) = t0.matrix();
VERIFY_IS_APPROX(t0.inverse(Isometry).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4));
Matrix3 mat_rotation, mat_scaling;
t0.setIdentity();
t0.translate(v0).rotate(q1).scale(v1);
t0.computeRotationScaling(&mat_rotation, &mat_scaling);
VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling);
VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
t0.computeScalingRotation(&mat_scaling, &mat_rotation);
VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation);
VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
// test casting
Transform<float,3,Mode> t1f = t1.template cast<float>();
VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1);
Transform<double,3,Mode> t1d = t1.template cast<double>();
VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1);
Translation3 tr1(v0);
Translation<float,3> tr1f = tr1.template cast<float>();
VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1);
Translation<double,3> tr1d = tr1.template cast<double>();
VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1);
AngleAxis<float> aa1f = aa1.template cast<float>();
VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1);
AngleAxis<double> aa1d = aa1.template cast<double>();
VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1);
Rotation2D<Scalar> r2d1(internal::random<Scalar>());
Rotation2D<float> r2d1f = r2d1.template cast<float>();
VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1);
Rotation2D<double> r2d1d = r2d1.template cast<double>();
VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1);
}
template<typename Scalar> void transform_alignment()
{
typedef Transform<Scalar,3,Projective,AutoAlign> Projective3a;
typedef Transform<Scalar,3,Projective,DontAlign> Projective3u;
EIGEN_ALIGN16 Scalar array1[16];
EIGEN_ALIGN16 Scalar array2[16];
EIGEN_ALIGN16 Scalar array3[16+1];
Scalar* array3u = array3+1;
Projective3a *p1 = ::new(reinterpret_cast<void*>(array1)) Projective3a;
Projective3u *p2 = ::new(reinterpret_cast<void*>(array2)) Projective3u;
Projective3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Projective3u;
p1->matrix().setRandom();
*p2 = *p1;
*p3 = *p1;
VERIFY_IS_APPROX(p1->matrix(), p2->matrix());
VERIFY_IS_APPROX(p1->matrix(), p3->matrix());
VERIFY_IS_APPROX( (*p1) * (*p1), (*p2)*(*p3));
#ifdef EIGEN_VECTORIZE
VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Projective3a));
#endif
}
void test_geo_transformations()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(( transformations<double,Affine,AutoAlign>() ));
CALL_SUBTEST_1(( non_projective_only<double,Affine,AutoAlign>() ));
CALL_SUBTEST_2(( transformations<float,AffineCompact,AutoAlign>() ));
CALL_SUBTEST_2(( non_projective_only<float,AffineCompact,AutoAlign>() ));
CALL_SUBTEST_3(( transformations<double,Projective,AutoAlign>() ));
CALL_SUBTEST_3(( transformations<double,Projective,DontAlign>() ));
CALL_SUBTEST_3(( transform_alignment<double>() ));
}
}