mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
4241dddee9
The solution will consist in adding a real Traits system.
75 lines
2.6 KiB
C++
75 lines
2.6 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the Free Software
|
|
// Foundation; either version 2 or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
// details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
|
|
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
//
|
|
// As a special exception, if other files instantiate templates or use macros
|
|
// or functions from this file, or you compile this file and link it
|
|
// with other works to produce a work based on this file, this file does not
|
|
// by itself cause the resulting work to be covered by the GNU General Public
|
|
// License. This exception does not invalidate any other reasons why a work
|
|
// based on this file might be covered by the GNU General Public License.
|
|
|
|
#include "main.h"
|
|
|
|
template<typename MatrixType1,
|
|
typename MatrixType2> void matrixOps(const MatrixType1& m1, const MatrixType2& m2)
|
|
{
|
|
typedef typename MatrixType1::Scalar Scalar;
|
|
int rows1 = m1.rows(), cols1 = m1.cols();
|
|
int rows2 = m2.rows(), cols2 = m2.cols();
|
|
|
|
MatrixType1 a(rows1, cols1), b(rows1, cols1), c(b);
|
|
Scalar s;
|
|
a * s;
|
|
s * a;
|
|
a + b;
|
|
a - b;
|
|
(a + b) * s;
|
|
s * (a + b);
|
|
a + b + c;
|
|
a = b;
|
|
a = b + c;
|
|
a = s * (b - c);
|
|
a = (a + b).eval();
|
|
a += b;
|
|
a -= b + b;
|
|
a *= s;
|
|
if(rows1 == cols1)
|
|
{
|
|
a *= b;
|
|
a.lazyMul(b);
|
|
}
|
|
|
|
MatrixType1 d(rows1, cols1);
|
|
MatrixType2 e(rows2, cols2);
|
|
QVERIFY( (d * e).rows() == rows1 && (d * e).cols() == cols2 );
|
|
}
|
|
|
|
void EigenTest::testMatrixOps()
|
|
{
|
|
matrixOps(EiMatrix<float, 1, 1>(), EiMatrix<float, 1, 1>());
|
|
matrixOps(EiMatrix<int, 2, 3>(), EiMatrix<int, 3, 1>());
|
|
matrixOps(EiMatrix<double, 3, 3>(), EiMatrix<double, 3, 3>());
|
|
matrixOps(EiMatrix<complex<float>, 4,3>(), EiMatrix<complex<float>, 3,4>());
|
|
matrixOps(EiMatrixXf(1, 1), EiMatrixXf(1, 3));
|
|
matrixOps(EiMatrixXi(2, 2), EiMatrixXi(2, 2));
|
|
matrixOps(EiMatrixXd(3, 5), EiMatrixXd(5, 1));
|
|
matrixOps(EiMatrixXcf(4, 4), EiMatrixXcf(4, 4));
|
|
matrixOps(EiMatrixXd(3, 5), EiMatrix<double, 5, 1>());
|
|
matrixOps(EiMatrix4cf(), EiMatrixXcf(4, 4));
|
|
}
|