mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-27 07:29:52 +08:00
2d7bd1ec91
* Use absolute error instead of relative error. * Test on well-conditioned matrices. * Do not repeat the same test g_repeat times (bug fix). * Correct diagnostic output in matrix_exponential.cpp .
190 lines
6.5 KiB
C++
190 lines
6.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/MatrixFunctions>
|
|
|
|
// Variant of VERIFY_IS_APPROX which uses absolute error instead of
|
|
// relative error.
|
|
#define VERIFY_IS_APPROX_ABS(a, b) VERIFY(test_isApprox_abs(a, b))
|
|
|
|
template<typename Type1, typename Type2>
|
|
inline bool test_isApprox_abs(const Type1& a, const Type2& b)
|
|
{
|
|
return ((a-b).array().abs() < test_precision<typename Type1::RealScalar>()).all();
|
|
}
|
|
|
|
|
|
// Returns a matrix with eigenvalues clustered around 0, 1 and 2.
|
|
template<typename MatrixType>
|
|
MatrixType randomMatrixWithRealEivals(const int size)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
MatrixType diag = MatrixType::Zero(size, size);
|
|
for (int i = 0; i < size; ++i) {
|
|
diag(i, i) = Scalar(RealScalar(ei_random<int>(0,2)))
|
|
+ ei_random<Scalar>() * Scalar(RealScalar(0.01));
|
|
}
|
|
MatrixType A = MatrixType::Random(size, size);
|
|
HouseholderQR<MatrixType> QRofA(A);
|
|
return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
|
|
}
|
|
|
|
template <typename MatrixType, int IsComplex = NumTraits<typename ei_traits<MatrixType>::Scalar>::IsComplex>
|
|
struct randomMatrixWithImagEivals
|
|
{
|
|
// Returns a matrix with eigenvalues clustered around 0 and +/- i.
|
|
static MatrixType run(const int size);
|
|
};
|
|
|
|
// Partial specialization for real matrices
|
|
template<typename MatrixType>
|
|
struct randomMatrixWithImagEivals<MatrixType, 0>
|
|
{
|
|
static MatrixType run(const int size)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
MatrixType diag = MatrixType::Zero(size, size);
|
|
int i = 0;
|
|
while (i < size) {
|
|
int randomInt = ei_random<int>(-1, 1);
|
|
if (randomInt == 0 || i == size-1) {
|
|
diag(i, i) = ei_random<Scalar>() * Scalar(0.01);
|
|
++i;
|
|
} else {
|
|
Scalar alpha = Scalar(randomInt) + ei_random<Scalar>() * Scalar(0.01);
|
|
diag(i, i+1) = alpha;
|
|
diag(i+1, i) = -alpha;
|
|
i += 2;
|
|
}
|
|
}
|
|
MatrixType A = MatrixType::Random(size, size);
|
|
HouseholderQR<MatrixType> QRofA(A);
|
|
return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
|
|
}
|
|
};
|
|
|
|
// Partial specialization for complex matrices
|
|
template<typename MatrixType>
|
|
struct randomMatrixWithImagEivals<MatrixType, 1>
|
|
{
|
|
static MatrixType run(const int size)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename MatrixType::RealScalar RealScalar;
|
|
const Scalar imagUnit(0, 1);
|
|
MatrixType diag = MatrixType::Zero(size, size);
|
|
for (int i = 0; i < size; ++i) {
|
|
diag(i, i) = Scalar(RealScalar(ei_random<int>(-1, 1))) * imagUnit
|
|
+ ei_random<Scalar>() * Scalar(RealScalar(0.01));
|
|
}
|
|
MatrixType A = MatrixType::Random(size, size);
|
|
HouseholderQR<MatrixType> QRofA(A);
|
|
return QRofA.householderQ().inverse() * diag * QRofA.householderQ();
|
|
}
|
|
};
|
|
|
|
|
|
template<typename MatrixType>
|
|
void testMatrixExponential(const MatrixType& A)
|
|
{
|
|
typedef typename ei_traits<MatrixType>::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef std::complex<RealScalar> ComplexScalar;
|
|
|
|
VERIFY_IS_APPROX(ei_matrix_exponential(A),
|
|
ei_matrix_function(A, StdStemFunctions<ComplexScalar>::exp));
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
void testHyperbolicFunctions(const MatrixType& A)
|
|
{
|
|
// Need to use absolute error because of possible cancellation when
|
|
// adding/subtracting expA and expmA.
|
|
MatrixType expA = ei_matrix_exponential(A);
|
|
MatrixType expmA = ei_matrix_exponential(-A);
|
|
VERIFY_IS_APPROX_ABS(ei_matrix_sinh(A), (expA - expmA) / 2);
|
|
VERIFY_IS_APPROX_ABS(ei_matrix_cosh(A), (expA + expmA) / 2);
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
void testGonioFunctions(const MatrixType& A)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef std::complex<RealScalar> ComplexScalar;
|
|
typedef Matrix<ComplexScalar, MatrixType::RowsAtCompileTime,
|
|
MatrixType::ColsAtCompileTime, MatrixType::Options> ComplexMatrix;
|
|
|
|
ComplexScalar imagUnit(0,1);
|
|
ComplexScalar two(2,0);
|
|
|
|
ComplexMatrix Ac = A.template cast<ComplexScalar>();
|
|
|
|
ComplexMatrix exp_iA = ei_matrix_exponential(imagUnit * Ac);
|
|
ComplexMatrix exp_miA = ei_matrix_exponential(-imagUnit * Ac);
|
|
|
|
MatrixType sinA = ei_matrix_sin(A);
|
|
ComplexMatrix sinAc = sinA.template cast<ComplexScalar>();
|
|
VERIFY_IS_APPROX_ABS(sinAc, (exp_iA - exp_miA) / (two*imagUnit));
|
|
|
|
MatrixType cosA = ei_matrix_cos(A);
|
|
ComplexMatrix cosAc = cosA.template cast<ComplexScalar>();
|
|
VERIFY_IS_APPROX_ABS(cosAc, (exp_iA + exp_miA) / 2);
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
void testMatrix(const MatrixType& A)
|
|
{
|
|
testMatrixExponential(A);
|
|
testHyperbolicFunctions(A);
|
|
testGonioFunctions(A);
|
|
}
|
|
|
|
template<typename MatrixType>
|
|
void testMatrixType(const MatrixType& m)
|
|
{
|
|
// Matrices with clustered eigenvalue lead to different code paths
|
|
// in MatrixFunction.h and are thus useful for testing.
|
|
|
|
const int size = m.rows();
|
|
for (int i = 0; i < g_repeat; i++) {
|
|
testMatrix(MatrixType::Random(size, size).eval());
|
|
testMatrix(randomMatrixWithRealEivals<MatrixType>(size));
|
|
testMatrix(randomMatrixWithImagEivals<MatrixType>::run(size));
|
|
}
|
|
}
|
|
|
|
void test_matrix_function()
|
|
{
|
|
CALL_SUBTEST_1(testMatrixType(Matrix<float,1,1>()));
|
|
CALL_SUBTEST_2(testMatrixType(Matrix3cf()));
|
|
CALL_SUBTEST_3(testMatrixType(MatrixXf(8,8)));
|
|
CALL_SUBTEST_4(testMatrixType(Matrix2d()));
|
|
CALL_SUBTEST_5(testMatrixType(Matrix<double,5,5,RowMajor>()));
|
|
CALL_SUBTEST_6(testMatrixType(Matrix4cd()));
|
|
CALL_SUBTEST_7(testMatrixType(MatrixXd(13,13)));
|
|
}
|