mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
986 lines
34 KiB
C++
986 lines
34 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#ifndef EIGEN_SPARSEMATRIX_H
|
|
#define EIGEN_SPARSEMATRIX_H
|
|
|
|
/** \ingroup SparseCore_Module
|
|
*
|
|
* \class SparseMatrix
|
|
*
|
|
* \brief A versatible sparse matrix representation
|
|
*
|
|
* This class implements a more versatile variants of the common \em compressed row/column storage format.
|
|
* Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index.
|
|
* All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra
|
|
* space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero
|
|
* can be done with limited memory reallocation and copies.
|
|
*
|
|
* A call to the function makeCompressed() turns the matrix into the standard \em compressed format
|
|
* compatible with many library.
|
|
*
|
|
* More details on this storage sceheme are given in the \ref TutorialSparse "manual pages".
|
|
*
|
|
* \tparam _Scalar the scalar type, i.e. the type of the coefficients
|
|
* \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility
|
|
* is RowMajor. The default is 0 which means column-major.
|
|
* \tparam _Index the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int.
|
|
*
|
|
* This class can be extended with the help of the plugin mechanism described on the page
|
|
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN.
|
|
*/
|
|
|
|
namespace internal {
|
|
template<typename _Scalar, int _Options, typename _Index>
|
|
struct traits<SparseMatrix<_Scalar, _Options, _Index> >
|
|
{
|
|
typedef _Scalar Scalar;
|
|
typedef _Index Index;
|
|
typedef Sparse StorageKind;
|
|
typedef MatrixXpr XprKind;
|
|
enum {
|
|
RowsAtCompileTime = Dynamic,
|
|
ColsAtCompileTime = Dynamic,
|
|
MaxRowsAtCompileTime = Dynamic,
|
|
MaxColsAtCompileTime = Dynamic,
|
|
Flags = _Options | NestByRefBit | LvalueBit,
|
|
CoeffReadCost = NumTraits<Scalar>::ReadCost,
|
|
SupportedAccessPatterns = InnerRandomAccessPattern
|
|
};
|
|
};
|
|
|
|
template<typename _Scalar, int _Options, typename _Index, int DiagIndex>
|
|
struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _Index>, DiagIndex> >
|
|
{
|
|
typedef SparseMatrix<_Scalar, _Options, _Index> MatrixType;
|
|
typedef typename nested<MatrixType>::type MatrixTypeNested;
|
|
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
|
|
|
|
typedef _Scalar Scalar;
|
|
typedef Dense StorageKind;
|
|
typedef _Index Index;
|
|
typedef MatrixXpr XprKind;
|
|
|
|
enum {
|
|
RowsAtCompileTime = Dynamic,
|
|
ColsAtCompileTime = 1,
|
|
MaxRowsAtCompileTime = Dynamic,
|
|
MaxColsAtCompileTime = 1,
|
|
Flags = 0,
|
|
CoeffReadCost = _MatrixTypeNested::CoeffReadCost*10
|
|
};
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
template<typename _Scalar, int _Options, typename _Index>
|
|
class SparseMatrix
|
|
: public SparseMatrixBase<SparseMatrix<_Scalar, _Options, _Index> >
|
|
{
|
|
public:
|
|
EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix)
|
|
EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, +=)
|
|
EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, -=)
|
|
|
|
typedef MappedSparseMatrix<Scalar,Flags> Map;
|
|
using Base::IsRowMajor;
|
|
typedef internal::CompressedStorage<Scalar,Index> Storage;
|
|
enum {
|
|
Options = _Options
|
|
};
|
|
|
|
protected:
|
|
|
|
typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix;
|
|
|
|
Index m_outerSize;
|
|
Index m_innerSize;
|
|
Index* m_outerIndex;
|
|
Index* m_innerNonZeros; // optional, if null then the data is compressed
|
|
Storage m_data;
|
|
|
|
Eigen::Map<Matrix<Index,Dynamic,1> > innerNonZeros() { return Eigen::Map<Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); }
|
|
const Eigen::Map<const Matrix<Index,Dynamic,1> > innerNonZeros() const { return Eigen::Map<const Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); }
|
|
|
|
public:
|
|
|
|
/** \returns whether \c *this is in compressed form. */
|
|
inline bool isCompressed() const { return m_innerNonZeros==0; }
|
|
|
|
/** \returns the number of rows of the matrix */
|
|
inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
|
|
/** \returns the number of columns of the matrix */
|
|
inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
|
|
|
|
/** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */
|
|
inline Index innerSize() const { return m_innerSize; }
|
|
/** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */
|
|
inline Index outerSize() const { return m_outerSize; }
|
|
|
|
/** \returns a const pointer to the array of values.
|
|
* This function is aimed at interoperability with other libraries.
|
|
* \sa innerIndexPtr(), outerIndexPtr() */
|
|
inline const Scalar* valuePtr() const { return &m_data.value(0); }
|
|
/** \returns a non-const pointer to the array of values.
|
|
* This function is aimed at interoperability with other libraries.
|
|
* \sa innerIndexPtr(), outerIndexPtr() */
|
|
inline Scalar* valuePtr() { return &m_data.value(0); }
|
|
|
|
/** \returns a const pointer to the array of inner indices.
|
|
* This function is aimed at interoperability with other libraries.
|
|
* \sa valuePtr(), outerIndexPtr() */
|
|
inline const Index* innerIndexPtr() const { return &m_data.index(0); }
|
|
/** \returns a non-const pointer to the array of inner indices.
|
|
* This function is aimed at interoperability with other libraries.
|
|
* \sa valuePtr(), outerIndexPtr() */
|
|
inline Index* innerIndexPtr() { return &m_data.index(0); }
|
|
|
|
/** \returns a const pointer to the array of the starting positions of the inner vectors.
|
|
* This function is aimed at interoperability with other libraries.
|
|
* \sa valuePtr(), innerIndexPtr() */
|
|
inline const Index* outerIndexPtr() const { return m_outerIndex; }
|
|
/** \returns a non-const pointer to the array of the starting positions of the inner vectors.
|
|
* This function is aimed at interoperability with other libraries.
|
|
* \sa valuePtr(), innerIndexPtr() */
|
|
inline Index* outerIndexPtr() { return m_outerIndex; }
|
|
|
|
/** \returns a const pointer to the array of the number of non zeros of the inner vectors.
|
|
* This function is aimed at interoperability with other libraries.
|
|
* \warning it returns the null pointer 0 in compressed mode */
|
|
inline const Index* innerNonZeroPtr() const { return m_innerNonZeros; }
|
|
/** \returns a non-const pointer to the array of the number of non zeros of the inner vectors.
|
|
* This function is aimed at interoperability with other libraries.
|
|
* \warning it returns the null pointer 0 in compressed mode */
|
|
inline Index* innerNonZeroPtr() { return m_innerNonZeros; }
|
|
|
|
/** \internal */
|
|
inline Storage& data() { return m_data; }
|
|
/** \internal */
|
|
inline const Storage& data() const { return m_data; }
|
|
|
|
/** \returns the value of the matrix at position \a i, \a j
|
|
* This function returns Scalar(0) if the element is an explicit \em zero */
|
|
inline Scalar coeff(Index row, Index col) const
|
|
{
|
|
const Index outer = IsRowMajor ? row : col;
|
|
const Index inner = IsRowMajor ? col : row;
|
|
Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
|
|
return m_data.atInRange(m_outerIndex[outer], end, inner);
|
|
}
|
|
|
|
/** \returns a non-const reference to the value of the matrix at position \a i, \a j
|
|
*
|
|
* If the element does not exist then it is inserted via the insert(Index,Index) function
|
|
* which itself turns the matrix into a non compressed form if that was not the case.
|
|
*
|
|
* This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index)
|
|
* function if the element does not already exist.
|
|
*/
|
|
inline Scalar& coeffRef(Index row, Index col)
|
|
{
|
|
const Index outer = IsRowMajor ? row : col;
|
|
const Index inner = IsRowMajor ? col : row;
|
|
|
|
Index start = m_outerIndex[outer];
|
|
Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1];
|
|
eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
|
|
if(end<=start)
|
|
return insert(row,col);
|
|
const Index p = m_data.searchLowerIndex(start,end-1,inner);
|
|
if((p<end) && (m_data.index(p)==inner))
|
|
return m_data.value(p);
|
|
else
|
|
return insert(row,col);
|
|
}
|
|
|
|
/** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.
|
|
* The non zero coefficient must \b not already exist.
|
|
*
|
|
* If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed
|
|
* mode while reserving room for 2 non zeros per inner vector. It is strongly recommended to first
|
|
* call reserve(const SizesType &) to reserve a more appropriate number of elements per
|
|
* inner vector that better match your scenario.
|
|
*
|
|
* This function performs a sorted insertion in O(1) if the elements of each inner vector are
|
|
* inserted in increasing inner index order, and in O(nnz_j) for a random insertion.
|
|
*
|
|
*/
|
|
EIGEN_DONT_INLINE Scalar& insert(Index row, Index col)
|
|
{
|
|
if(isCompressed())
|
|
{
|
|
reserve(VectorXi::Constant(outerSize(), 2));
|
|
}
|
|
return insertUncompressed(row,col);
|
|
}
|
|
|
|
public:
|
|
|
|
class InnerIterator;
|
|
class ReverseInnerIterator;
|
|
|
|
/** Removes all non zeros but keep allocated memory */
|
|
inline void setZero()
|
|
{
|
|
m_data.clear();
|
|
memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
|
|
if(m_innerNonZeros)
|
|
memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(Index));
|
|
}
|
|
|
|
/** \returns the number of non zero coefficients */
|
|
inline Index nonZeros() const
|
|
{
|
|
if(m_innerNonZeros)
|
|
return innerNonZeros().sum();
|
|
return static_cast<Index>(m_data.size());
|
|
}
|
|
|
|
/** Preallocates \a reserveSize non zeros.
|
|
*
|
|
* Precondition: the matrix must be in compressed mode. */
|
|
inline void reserve(Index reserveSize)
|
|
{
|
|
eigen_assert(isCompressed() && "This function does not make sense in non compressed mode.");
|
|
m_data.reserve(reserveSize);
|
|
}
|
|
|
|
#ifdef EIGEN_PARSED_BY_DOXYGEN
|
|
/** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j.
|
|
*
|
|
* This function turns the matrix in non-compressed mode */
|
|
template<class SizesType>
|
|
inline void reserve(const SizesType& reserveSizes);
|
|
#else
|
|
template<class SizesType>
|
|
inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif = typename SizesType::value_type())
|
|
{
|
|
EIGEN_UNUSED_VARIABLE(enableif);
|
|
reserveInnerVectors(reserveSizes);
|
|
}
|
|
template<class SizesType>
|
|
inline void reserve(const SizesType& reserveSizes, const typename SizesType::Scalar& enableif = typename SizesType::Scalar())
|
|
{
|
|
EIGEN_UNUSED_VARIABLE(enableif);
|
|
reserveInnerVectors(reserveSizes);
|
|
}
|
|
#endif // EIGEN_PARSED_BY_DOXYGEN
|
|
protected:
|
|
template<class SizesType>
|
|
inline void reserveInnerVectors(const SizesType& reserveSizes)
|
|
{
|
|
|
|
if(isCompressed())
|
|
{
|
|
std::size_t totalReserveSize = 0;
|
|
// turn the matrix into non-compressed mode
|
|
m_innerNonZeros = new Index[m_outerSize];
|
|
|
|
// temporarily use m_innerSizes to hold the new starting points.
|
|
Index* newOuterIndex = m_innerNonZeros;
|
|
|
|
Index count = 0;
|
|
for(Index j=0; j<m_outerSize; ++j)
|
|
{
|
|
newOuterIndex[j] = count;
|
|
count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]);
|
|
totalReserveSize += reserveSizes[j];
|
|
}
|
|
m_data.reserve(totalReserveSize);
|
|
std::ptrdiff_t previousOuterIndex = m_outerIndex[m_outerSize];
|
|
for(std::ptrdiff_t j=m_outerSize-1; j>=0; --j)
|
|
{
|
|
ptrdiff_t innerNNZ = previousOuterIndex - m_outerIndex[j];
|
|
for(std::ptrdiff_t i=innerNNZ-1; i>=0; --i)
|
|
{
|
|
m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
|
|
m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
|
|
}
|
|
previousOuterIndex = m_outerIndex[j];
|
|
m_outerIndex[j] = newOuterIndex[j];
|
|
m_innerNonZeros[j] = innerNNZ;
|
|
}
|
|
m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1];
|
|
|
|
m_data.resize(m_outerIndex[m_outerSize]);
|
|
}
|
|
else
|
|
{
|
|
Index* newOuterIndex = new Index[m_outerSize+1];
|
|
Index count = 0;
|
|
for(Index j=0; j<m_outerSize; ++j)
|
|
{
|
|
newOuterIndex[j] = count;
|
|
Index alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j];
|
|
Index toReserve = std::max<std::ptrdiff_t>(reserveSizes[j], alreadyReserved);
|
|
count += toReserve + m_innerNonZeros[j];
|
|
}
|
|
newOuterIndex[m_outerSize] = count;
|
|
|
|
m_data.resize(count);
|
|
for(ptrdiff_t j=m_outerSize-1; j>=0; --j)
|
|
{
|
|
std::ptrdiff_t offset = newOuterIndex[j] - m_outerIndex[j];
|
|
if(offset>0)
|
|
{
|
|
std::ptrdiff_t innerNNZ = m_innerNonZeros[j];
|
|
for(std::ptrdiff_t i=innerNNZ-1; i>=0; --i)
|
|
{
|
|
m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i);
|
|
m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::swap(m_outerIndex, newOuterIndex);
|
|
delete[] newOuterIndex;
|
|
}
|
|
|
|
}
|
|
public:
|
|
|
|
//--- low level purely coherent filling ---
|
|
|
|
/** \internal
|
|
* \returns a reference to the non zero coefficient at position \a row, \a col assuming that:
|
|
* - the nonzero does not already exist
|
|
* - the new coefficient is the last one according to the storage order
|
|
*
|
|
* Before filling a given inner vector you must call the statVec(Index) function.
|
|
*
|
|
* After an insertion session, you should call the finalize() function.
|
|
*
|
|
* \sa insert, insertBackByOuterInner, startVec */
|
|
inline Scalar& insertBack(Index row, Index col)
|
|
{
|
|
return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row);
|
|
}
|
|
|
|
/** \internal
|
|
* \sa insertBack, startVec */
|
|
inline Scalar& insertBackByOuterInner(Index outer, Index inner)
|
|
{
|
|
eigen_assert(size_t(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)");
|
|
eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)");
|
|
Index p = m_outerIndex[outer+1];
|
|
++m_outerIndex[outer+1];
|
|
m_data.append(0, inner);
|
|
return m_data.value(p);
|
|
}
|
|
|
|
/** \internal
|
|
* \warning use it only if you know what you are doing */
|
|
inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner)
|
|
{
|
|
Index p = m_outerIndex[outer+1];
|
|
++m_outerIndex[outer+1];
|
|
m_data.append(0, inner);
|
|
return m_data.value(p);
|
|
}
|
|
|
|
/** \internal
|
|
* \sa insertBack, insertBackByOuterInner */
|
|
inline void startVec(Index outer)
|
|
{
|
|
eigen_assert(m_outerIndex[outer]==int(m_data.size()) && "You must call startVec for each inner vector sequentially");
|
|
eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially");
|
|
m_outerIndex[outer+1] = m_outerIndex[outer];
|
|
}
|
|
|
|
/** \internal
|
|
* Must be called after inserting a set of non zero entries using the low level compressed API.
|
|
*/
|
|
inline void finalize()
|
|
{
|
|
if(isCompressed())
|
|
{
|
|
Index size = static_cast<Index>(m_data.size());
|
|
Index i = m_outerSize;
|
|
// find the last filled column
|
|
while (i>=0 && m_outerIndex[i]==0)
|
|
--i;
|
|
++i;
|
|
while (i<=m_outerSize)
|
|
{
|
|
m_outerIndex[i] = size;
|
|
++i;
|
|
}
|
|
}
|
|
}
|
|
|
|
//---
|
|
|
|
|
|
|
|
/** \internal
|
|
* same as insert(Index,Index) except that the indices are given relative to the storage order */
|
|
EIGEN_DONT_INLINE Scalar& insertByOuterInner(Index j, Index i)
|
|
{
|
|
return insert(IsRowMajor ? j : i, IsRowMajor ? i : j);
|
|
}
|
|
|
|
/** Turns the matrix into the \em compressed format.
|
|
*/
|
|
void makeCompressed()
|
|
{
|
|
if(isCompressed())
|
|
return;
|
|
|
|
Index oldStart = m_outerIndex[1];
|
|
m_outerIndex[1] = m_innerNonZeros[0];
|
|
for(Index j=1; j<m_outerSize; ++j)
|
|
{
|
|
Index nextOldStart = m_outerIndex[j+1];
|
|
std::ptrdiff_t offset = oldStart - m_outerIndex[j];
|
|
if(offset>0)
|
|
{
|
|
for(Index k=0; k<m_innerNonZeros[j]; ++k)
|
|
{
|
|
m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k);
|
|
m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k);
|
|
}
|
|
}
|
|
m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j];
|
|
oldStart = nextOldStart;
|
|
}
|
|
delete[] m_innerNonZeros;
|
|
m_innerNonZeros = 0;
|
|
m_data.resize(m_outerIndex[m_outerSize]);
|
|
m_data.squeeze();
|
|
}
|
|
|
|
/** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */
|
|
void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
|
|
{
|
|
prune(default_prunning_func(reference,epsilon));
|
|
}
|
|
|
|
/** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep.
|
|
* The functor type \a KeepFunc must implement the following function:
|
|
* \code
|
|
* bool operator() (const Index& row, const Index& col, const Scalar& value) const;
|
|
* \endcode
|
|
* \sa prune(Scalar,RealScalar)
|
|
*/
|
|
template<typename KeepFunc>
|
|
void prune(const KeepFunc& keep = KeepFunc())
|
|
{
|
|
// TODO optimize the uncompressed mode to avoid moving and allocating the data twice
|
|
// TODO also implement a unit test
|
|
makeCompressed();
|
|
|
|
Index k = 0;
|
|
for(Index j=0; j<m_outerSize; ++j)
|
|
{
|
|
Index previousStart = m_outerIndex[j];
|
|
m_outerIndex[j] = k;
|
|
Index end = m_outerIndex[j+1];
|
|
for(Index i=previousStart; i<end; ++i)
|
|
{
|
|
if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i)))
|
|
{
|
|
m_data.value(k) = m_data.value(i);
|
|
m_data.index(k) = m_data.index(i);
|
|
++k;
|
|
}
|
|
}
|
|
}
|
|
m_outerIndex[m_outerSize] = k;
|
|
m_data.resize(k,0);
|
|
}
|
|
|
|
/** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero.
|
|
* \sa resizeNonZeros(Index), reserve(), setZero()
|
|
*/
|
|
void resize(Index rows, Index cols)
|
|
{
|
|
const Index outerSize = IsRowMajor ? rows : cols;
|
|
m_innerSize = IsRowMajor ? cols : rows;
|
|
m_data.clear();
|
|
if (m_outerSize != outerSize || m_outerSize==0)
|
|
{
|
|
delete[] m_outerIndex;
|
|
m_outerIndex = new Index [outerSize+1];
|
|
m_outerSize = outerSize;
|
|
}
|
|
if(m_innerNonZeros)
|
|
{
|
|
delete[] m_innerNonZeros;
|
|
m_innerNonZeros = 0;
|
|
}
|
|
memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index));
|
|
}
|
|
|
|
/** \internal
|
|
* Resize the nonzero vector to \a size */
|
|
void resizeNonZeros(Index size)
|
|
{
|
|
// TODO remove this function
|
|
m_data.resize(size);
|
|
}
|
|
|
|
/** \returns a const expression of the diagonal coefficients */
|
|
const Diagonal<const SparseMatrix> diagonal() const { return *this; }
|
|
|
|
/** Default constructor yielding an empty \c 0 \c x \c 0 matrix */
|
|
inline SparseMatrix()
|
|
: m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
|
|
{
|
|
check_template_parameters();
|
|
resize(0, 0);
|
|
}
|
|
|
|
/** Constructs a \a rows \c x \a cols empty matrix */
|
|
inline SparseMatrix(Index rows, Index cols)
|
|
: m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
|
|
{
|
|
check_template_parameters();
|
|
resize(rows, cols);
|
|
}
|
|
|
|
/** Constructs a sparse matrix from the sparse expression \a other */
|
|
template<typename OtherDerived>
|
|
inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other)
|
|
: m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
|
|
{
|
|
check_template_parameters();
|
|
*this = other.derived();
|
|
}
|
|
|
|
/** Copy constructor (it performs a deep copy) */
|
|
inline SparseMatrix(const SparseMatrix& other)
|
|
: Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0)
|
|
{
|
|
check_template_parameters();
|
|
*this = other.derived();
|
|
}
|
|
|
|
/** Swaps the content of two sparse matrices of the same type.
|
|
* This is a fast operation that simply swaps the underlying pointers and parameters. */
|
|
inline void swap(SparseMatrix& other)
|
|
{
|
|
//EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n");
|
|
std::swap(m_outerIndex, other.m_outerIndex);
|
|
std::swap(m_innerSize, other.m_innerSize);
|
|
std::swap(m_outerSize, other.m_outerSize);
|
|
std::swap(m_innerNonZeros, other.m_innerNonZeros);
|
|
m_data.swap(other.m_data);
|
|
}
|
|
|
|
inline SparseMatrix& operator=(const SparseMatrix& other)
|
|
{
|
|
if (other.isRValue())
|
|
{
|
|
swap(other.const_cast_derived());
|
|
}
|
|
else
|
|
{
|
|
initAssignment(other);
|
|
if(other.isCompressed())
|
|
{
|
|
memcpy(m_outerIndex, other.m_outerIndex, (m_outerSize+1)*sizeof(Index));
|
|
m_data = other.m_data;
|
|
}
|
|
else
|
|
{
|
|
Base::operator=(other);
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
template<typename Lhs, typename Rhs>
|
|
inline SparseMatrix& operator=(const SparseSparseProduct<Lhs,Rhs>& product)
|
|
{ return Base::operator=(product); }
|
|
|
|
template<typename OtherDerived>
|
|
inline SparseMatrix& operator=(const ReturnByValue<OtherDerived>& other)
|
|
{ return Base::operator=(other.derived()); }
|
|
|
|
template<typename OtherDerived>
|
|
inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other)
|
|
{ return Base::operator=(other.derived()); }
|
|
#endif
|
|
|
|
template<typename OtherDerived>
|
|
EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other)
|
|
{
|
|
initAssignment(other.derived());
|
|
const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
|
|
if (needToTranspose)
|
|
{
|
|
// two passes algorithm:
|
|
// 1 - compute the number of coeffs per dest inner vector
|
|
// 2 - do the actual copy/eval
|
|
// Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed
|
|
typedef typename internal::nested<OtherDerived,2>::type OtherCopy;
|
|
typedef typename internal::remove_all<OtherCopy>::type _OtherCopy;
|
|
OtherCopy otherCopy(other.derived());
|
|
|
|
Eigen::Map<Matrix<Index, Dynamic, 1> > (m_outerIndex,outerSize()).setZero();
|
|
// pass 1
|
|
// FIXME the above copy could be merged with that pass
|
|
for (Index j=0; j<otherCopy.outerSize(); ++j)
|
|
for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
|
|
++m_outerIndex[it.index()];
|
|
|
|
// prefix sum
|
|
Index count = 0;
|
|
VectorXi positions(outerSize());
|
|
for (Index j=0; j<outerSize(); ++j)
|
|
{
|
|
Index tmp = m_outerIndex[j];
|
|
m_outerIndex[j] = count;
|
|
positions[j] = count;
|
|
count += tmp;
|
|
}
|
|
m_outerIndex[outerSize()] = count;
|
|
// alloc
|
|
m_data.resize(count);
|
|
// pass 2
|
|
for (Index j=0; j<otherCopy.outerSize(); ++j)
|
|
{
|
|
for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it)
|
|
{
|
|
Index pos = positions[it.index()]++;
|
|
m_data.index(pos) = j;
|
|
m_data.value(pos) = it.value();
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
else
|
|
{
|
|
// there is no special optimization
|
|
return Base::operator=(other.derived());
|
|
}
|
|
}
|
|
|
|
friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m)
|
|
{
|
|
EIGEN_DBG_SPARSE(
|
|
s << "Nonzero entries:\n";
|
|
if(m.isCompressed())
|
|
for (Index i=0; i<m.nonZeros(); ++i)
|
|
s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") ";
|
|
else
|
|
for (Index i=0; i<m.outerSize(); ++i)
|
|
{
|
|
int p = m.m_outerIndex[i];
|
|
int pe = m.m_outerIndex[i]+m.m_innerNonZeros[i];
|
|
Index k=p;
|
|
for (; k<pe; ++k)
|
|
s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") ";
|
|
for (; k<m.m_outerIndex[i+1]; ++k)
|
|
s << "(_,_) ";
|
|
}
|
|
s << std::endl;
|
|
s << std::endl;
|
|
s << "Outer pointers:\n";
|
|
for (Index i=0; i<m.outerSize(); ++i)
|
|
s << m.m_outerIndex[i] << " ";
|
|
s << " $" << std::endl;
|
|
if(!m.isCompressed())
|
|
{
|
|
s << "Inner non zeros:\n";
|
|
for (Index i=0; i<m.outerSize(); ++i)
|
|
s << m.m_innerNonZeros[i] << " ";
|
|
s << " $" << std::endl;
|
|
}
|
|
s << std::endl;
|
|
);
|
|
s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m);
|
|
return s;
|
|
}
|
|
|
|
/** Destructor */
|
|
inline ~SparseMatrix()
|
|
{
|
|
delete[] m_outerIndex;
|
|
delete[] m_innerNonZeros;
|
|
}
|
|
|
|
#ifndef EIGEN_PARSED_BY_DOXYGEN
|
|
/** Overloaded for performance */
|
|
Scalar sum() const;
|
|
#endif
|
|
|
|
# ifdef EIGEN_SPARSEMATRIX_PLUGIN
|
|
# include EIGEN_SPARSEMATRIX_PLUGIN
|
|
# endif
|
|
|
|
protected:
|
|
|
|
template<typename Other>
|
|
void initAssignment(const Other& other)
|
|
{
|
|
resize(other.rows(), other.cols());
|
|
if(m_innerNonZeros)
|
|
{
|
|
delete[] m_innerNonZeros;
|
|
m_innerNonZeros = 0;
|
|
}
|
|
}
|
|
|
|
/** \internal
|
|
* \sa insert(Index,Index) */
|
|
EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col)
|
|
{
|
|
eigen_assert(isCompressed());
|
|
|
|
const Index outer = IsRowMajor ? row : col;
|
|
const Index inner = IsRowMajor ? col : row;
|
|
|
|
Index previousOuter = outer;
|
|
if (m_outerIndex[outer+1]==0)
|
|
{
|
|
// we start a new inner vector
|
|
while (previousOuter>=0 && m_outerIndex[previousOuter]==0)
|
|
{
|
|
m_outerIndex[previousOuter] = static_cast<Index>(m_data.size());
|
|
--previousOuter;
|
|
}
|
|
m_outerIndex[outer+1] = m_outerIndex[outer];
|
|
}
|
|
|
|
// here we have to handle the tricky case where the outerIndex array
|
|
// starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g.,
|
|
// the 2nd inner vector...
|
|
bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0))
|
|
&& (size_t(m_outerIndex[outer+1]) == m_data.size());
|
|
|
|
size_t startId = m_outerIndex[outer];
|
|
// FIXME let's make sure sizeof(long int) == sizeof(size_t)
|
|
size_t p = m_outerIndex[outer+1];
|
|
++m_outerIndex[outer+1];
|
|
|
|
float reallocRatio = 1;
|
|
if (m_data.allocatedSize()<=m_data.size())
|
|
{
|
|
// if there is no preallocated memory, let's reserve a minimum of 32 elements
|
|
if (m_data.size()==0)
|
|
{
|
|
m_data.reserve(32);
|
|
}
|
|
else
|
|
{
|
|
// we need to reallocate the data, to reduce multiple reallocations
|
|
// we use a smart resize algorithm based on the current filling ratio
|
|
// in addition, we use float to avoid integers overflows
|
|
float nnzEstimate = float(m_outerIndex[outer])*float(m_outerSize)/float(outer+1);
|
|
reallocRatio = (nnzEstimate-float(m_data.size()))/float(m_data.size());
|
|
// furthermore we bound the realloc ratio to:
|
|
// 1) reduce multiple minor realloc when the matrix is almost filled
|
|
// 2) avoid to allocate too much memory when the matrix is almost empty
|
|
reallocRatio = (std::min)((std::max)(reallocRatio,1.5f),8.f);
|
|
}
|
|
}
|
|
m_data.resize(m_data.size()+1,reallocRatio);
|
|
|
|
if (!isLastVec)
|
|
{
|
|
if (previousOuter==-1)
|
|
{
|
|
// oops wrong guess.
|
|
// let's correct the outer offsets
|
|
for (Index k=0; k<=(outer+1); ++k)
|
|
m_outerIndex[k] = 0;
|
|
Index k=outer+1;
|
|
while(m_outerIndex[k]==0)
|
|
m_outerIndex[k++] = 1;
|
|
while (k<=m_outerSize && m_outerIndex[k]!=0)
|
|
m_outerIndex[k++]++;
|
|
p = 0;
|
|
--k;
|
|
k = m_outerIndex[k]-1;
|
|
while (k>0)
|
|
{
|
|
m_data.index(k) = m_data.index(k-1);
|
|
m_data.value(k) = m_data.value(k-1);
|
|
k--;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// we are not inserting into the last inner vec
|
|
// update outer indices:
|
|
Index j = outer+2;
|
|
while (j<=m_outerSize && m_outerIndex[j]!=0)
|
|
m_outerIndex[j++]++;
|
|
--j;
|
|
// shift data of last vecs:
|
|
Index k = m_outerIndex[j]-1;
|
|
while (k>=Index(p))
|
|
{
|
|
m_data.index(k) = m_data.index(k-1);
|
|
m_data.value(k) = m_data.value(k-1);
|
|
k--;
|
|
}
|
|
}
|
|
}
|
|
|
|
while ( (p > startId) && (m_data.index(p-1) > inner) )
|
|
{
|
|
m_data.index(p) = m_data.index(p-1);
|
|
m_data.value(p) = m_data.value(p-1);
|
|
--p;
|
|
}
|
|
|
|
m_data.index(p) = inner;
|
|
return (m_data.value(p) = 0);
|
|
}
|
|
|
|
/** \internal
|
|
* A vector object that is equal to 0 everywhere but v at the position i */
|
|
class SingletonVector
|
|
{
|
|
Index m_index;
|
|
Index m_value;
|
|
public:
|
|
typedef Index value_type;
|
|
SingletonVector(Index i, Index v)
|
|
: m_index(i), m_value(v)
|
|
{}
|
|
|
|
Index operator[](Index i) const { return i==m_index ? m_value : 0; }
|
|
};
|
|
|
|
/** \internal
|
|
* \sa insert(Index,Index) */
|
|
EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col)
|
|
{
|
|
eigen_assert(!isCompressed());
|
|
|
|
const Index outer = IsRowMajor ? row : col;
|
|
const Index inner = IsRowMajor ? col : row;
|
|
|
|
std::ptrdiff_t room = m_outerIndex[outer+1] - m_outerIndex[outer];
|
|
std::ptrdiff_t innerNNZ = m_innerNonZeros[outer];
|
|
if(innerNNZ>=room)
|
|
{
|
|
// this inner vector is full, we need to reallocate the whole buffer :(
|
|
reserve(SingletonVector(outer,std::max<std::ptrdiff_t>(2,innerNNZ)));
|
|
}
|
|
|
|
Index startId = m_outerIndex[outer];
|
|
Index p = startId + m_innerNonZeros[outer];
|
|
while ( (p > startId) && (m_data.index(p-1) > inner) )
|
|
{
|
|
m_data.index(p) = m_data.index(p-1);
|
|
m_data.value(p) = m_data.value(p-1);
|
|
--p;
|
|
}
|
|
|
|
m_innerNonZeros[outer]++;
|
|
|
|
m_data.index(p) = inner;
|
|
return (m_data.value(p) = 0);
|
|
}
|
|
|
|
private:
|
|
static void check_template_parameters()
|
|
{
|
|
EIGEN_STATIC_ASSERT(NumTraits<Index>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE);
|
|
}
|
|
|
|
struct default_prunning_func {
|
|
default_prunning_func(Scalar ref, RealScalar eps) : reference(ref), epsilon(eps) {}
|
|
inline bool operator() (const Index&, const Index&, const Scalar& value) const
|
|
{
|
|
return !internal::isMuchSmallerThan(value, reference, epsilon);
|
|
}
|
|
Scalar reference;
|
|
RealScalar epsilon;
|
|
};
|
|
};
|
|
|
|
template<typename Scalar, int _Options, typename _Index>
|
|
class SparseMatrix<Scalar,_Options,_Index>::InnerIterator
|
|
{
|
|
public:
|
|
InnerIterator(const SparseMatrix& mat, Index outer)
|
|
: m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_id(mat.m_outerIndex[outer])
|
|
{
|
|
if(mat.isCompressed())
|
|
m_end = mat.m_outerIndex[outer+1];
|
|
else
|
|
m_end = m_id + mat.m_innerNonZeros[outer];
|
|
}
|
|
|
|
inline InnerIterator& operator++() { m_id++; return *this; }
|
|
|
|
inline const Scalar& value() const { return m_values[m_id]; }
|
|
inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); }
|
|
|
|
inline Index index() const { return m_indices[m_id]; }
|
|
inline Index outer() const { return m_outer; }
|
|
inline Index row() const { return IsRowMajor ? m_outer : index(); }
|
|
inline Index col() const { return IsRowMajor ? index() : m_outer; }
|
|
|
|
inline operator bool() const { return (m_id < m_end); }
|
|
|
|
protected:
|
|
const Scalar* m_values;
|
|
const Index* m_indices;
|
|
const Index m_outer;
|
|
Index m_id;
|
|
Index m_end;
|
|
};
|
|
|
|
template<typename Scalar, int _Options, typename _Index>
|
|
class SparseMatrix<Scalar,_Options,_Index>::ReverseInnerIterator
|
|
{
|
|
public:
|
|
ReverseInnerIterator(const SparseMatrix& mat, Index outer)
|
|
: m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_start(mat.m_outerIndex[outer])
|
|
{
|
|
if(mat.isCompressed())
|
|
m_id = mat.m_outerIndex[outer+1];
|
|
else
|
|
m_id = m_start + mat.m_innerNonZeros[outer];
|
|
}
|
|
|
|
inline ReverseInnerIterator& operator--() { --m_id; return *this; }
|
|
|
|
inline const Scalar& value() const { return m_values[m_id-1]; }
|
|
inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id-1]); }
|
|
|
|
inline Index index() const { return m_indices[m_id-1]; }
|
|
inline Index outer() const { return m_outer; }
|
|
inline Index row() const { return IsRowMajor ? m_outer : index(); }
|
|
inline Index col() const { return IsRowMajor ? index() : m_outer; }
|
|
|
|
inline operator bool() const { return (m_id > m_start); }
|
|
|
|
protected:
|
|
const Scalar* m_values;
|
|
const Index* m_indices;
|
|
const Index m_outer;
|
|
Index m_id;
|
|
const Index m_start;
|
|
};
|
|
|
|
#endif // EIGEN_SPARSEMATRIX_H
|