mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
104 lines
4.5 KiB
C++
104 lines
4.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the Free Software
|
|
// Foundation; either version 2 or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
// details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with Eigen; if not, write to the Free Software Foundation, Inc., 51
|
|
// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
//
|
|
// As a special exception, if other files instantiate templates or use macros
|
|
// or functions from this file, or you compile this file and link it
|
|
// with other works to produce a work based on this file, this file does not
|
|
// by itself cause the resulting work to be covered by the GNU General Public
|
|
// License. This exception does not invalidate any other reasons why a work
|
|
// based on this file might be covered by the GNU General Public License.
|
|
|
|
#include "main.h"
|
|
|
|
namespace Eigen {
|
|
|
|
template<typename MatrixType> void adjoint(const MatrixType& m)
|
|
{
|
|
/* this test covers the following files:
|
|
Transpose.h Conjugate.h Dot.h
|
|
*/
|
|
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::random(rows, cols),
|
|
m2 = MatrixType::random(rows, cols),
|
|
m3(rows, cols),
|
|
mzero = MatrixType::zero(rows, cols),
|
|
identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
|
|
::identity(rows),
|
|
square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
|
|
::random(rows, rows);
|
|
VectorType v1 = VectorType::random(rows),
|
|
v2 = VectorType::random(rows),
|
|
v3 = VectorType::random(rows),
|
|
vzero = VectorType::zero(rows);
|
|
|
|
Scalar s1 = random<Scalar>(),
|
|
s2 = random<Scalar>();
|
|
|
|
// check involutivity of adjoint, transpose, conjugate
|
|
VERIFY_IS_APPROX(m1.transpose().transpose(), m1);
|
|
VERIFY_IS_APPROX(m1.conjugate().conjugate(), m1);
|
|
VERIFY_IS_APPROX(m1.adjoint().adjoint(), m1);
|
|
|
|
// check basic compatibility of adjoint, transpose, conjugate
|
|
VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1);
|
|
VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1);
|
|
if(!NumTraits<Scalar>::IsComplex)
|
|
VERIFY_IS_APPROX(m1.adjoint().transpose(), m1);
|
|
|
|
// check multiplicative behavior
|
|
VERIFY_IS_APPROX((m1.transpose() * m2).transpose(), m2.transpose() * m1);
|
|
VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1);
|
|
VERIFY_IS_APPROX((m1.transpose() * m2).conjugate(), m1.adjoint() * m2.conjugate());
|
|
VERIFY_IS_APPROX((s1 * m1).transpose(), s1 * m1.transpose());
|
|
VERIFY_IS_APPROX((s1 * m1).conjugate(), conj(s1) * m1.conjugate());
|
|
VERIFY_IS_APPROX((s1 * m1).adjoint(), conj(s1) * m1.adjoint());
|
|
|
|
// check basic properties of dot, norm, norm2
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
VERIFY_IS_APPROX((s1 * v1 + s2 * v2).dot(v3), s1 * v1.dot(v3) + s2 * v2.dot(v3));
|
|
VERIFY_IS_APPROX(v3.dot(s1 * v1 + s2 * v2), conj(s1)*v3.dot(v1)+conj(s2)*v3.dot(v2));
|
|
VERIFY_IS_APPROX(conj(v1.dot(v2)), v2.dot(v1));
|
|
VERIFY_IS_APPROX(abs(v1.dot(v1)), v1.norm2());
|
|
if(NumTraits<Scalar>::HasFloatingPoint)
|
|
VERIFY_IS_APPROX(v1.norm2(), v1.norm() * v1.norm());
|
|
VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)), static_cast<RealScalar>(1));
|
|
if(NumTraits<Scalar>::HasFloatingPoint)
|
|
VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
|
|
|
|
// check compatibility of dot and adjoint
|
|
VERIFY_IS_APPROX(v1.dot(square * v2), (square.adjoint() * v1).dot(v2));
|
|
}
|
|
|
|
void EigenTest::testAdjoint()
|
|
{
|
|
for(int i = 0; i < m_repeat; i++) {
|
|
adjoint(Matrix<float, 1, 1>());
|
|
adjoint(Matrix4d());
|
|
adjoint(MatrixXcf(3, 3));
|
|
adjoint(MatrixXi(8, 12));
|
|
adjoint(MatrixXcd(20, 20));
|
|
}
|
|
}
|
|
|
|
} // namespace Eigen
|