mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
149 lines
4.8 KiB
C++
149 lines
4.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
// Copyright (C) 2009 Ricard Marxer <email@ricardmarxer.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "main.h"
|
|
#include <iostream>
|
|
|
|
using namespace std;
|
|
|
|
template<typename MatrixType> void reverse(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Index Index;
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
|
|
Index rows = m.rows();
|
|
Index cols = m.cols();
|
|
|
|
// this test relies a lot on Random.h, and there's not much more that we can do
|
|
// to test it, hence I consider that we will have tested Random.h
|
|
MatrixType m1 = MatrixType::Random(rows, cols), m2;
|
|
VectorType v1 = VectorType::Random(rows);
|
|
|
|
MatrixType m1_r = m1.reverse();
|
|
// Verify that MatrixBase::reverse() works
|
|
for ( int i = 0; i < rows; i++ ) {
|
|
for ( int j = 0; j < cols; j++ ) {
|
|
VERIFY_IS_APPROX(m1_r(i, j), m1(rows - 1 - i, cols - 1 - j));
|
|
}
|
|
}
|
|
|
|
Reverse<MatrixType> m1_rd(m1);
|
|
// Verify that a Reverse default (in both directions) of an expression works
|
|
for ( int i = 0; i < rows; i++ ) {
|
|
for ( int j = 0; j < cols; j++ ) {
|
|
VERIFY_IS_APPROX(m1_rd(i, j), m1(rows - 1 - i, cols - 1 - j));
|
|
}
|
|
}
|
|
|
|
Reverse<MatrixType, BothDirections> m1_rb(m1);
|
|
// Verify that a Reverse in both directions of an expression works
|
|
for ( int i = 0; i < rows; i++ ) {
|
|
for ( int j = 0; j < cols; j++ ) {
|
|
VERIFY_IS_APPROX(m1_rb(i, j), m1(rows - 1 - i, cols - 1 - j));
|
|
}
|
|
}
|
|
|
|
Reverse<MatrixType, Vertical> m1_rv(m1);
|
|
// Verify that a Reverse in the vertical directions of an expression works
|
|
for ( int i = 0; i < rows; i++ ) {
|
|
for ( int j = 0; j < cols; j++ ) {
|
|
VERIFY_IS_APPROX(m1_rv(i, j), m1(rows - 1 - i, j));
|
|
}
|
|
}
|
|
|
|
Reverse<MatrixType, Horizontal> m1_rh(m1);
|
|
// Verify that a Reverse in the horizontal directions of an expression works
|
|
for ( int i = 0; i < rows; i++ ) {
|
|
for ( int j = 0; j < cols; j++ ) {
|
|
VERIFY_IS_APPROX(m1_rh(i, j), m1(i, cols - 1 - j));
|
|
}
|
|
}
|
|
|
|
VectorType v1_r = v1.reverse();
|
|
// Verify that a VectorType::reverse() of an expression works
|
|
for ( int i = 0; i < rows; i++ ) {
|
|
VERIFY_IS_APPROX(v1_r(i), v1(rows - 1 - i));
|
|
}
|
|
|
|
MatrixType m1_cr = m1.colwise().reverse();
|
|
// Verify that PartialRedux::reverse() works (for colwise())
|
|
for ( int i = 0; i < rows; i++ ) {
|
|
for ( int j = 0; j < cols; j++ ) {
|
|
VERIFY_IS_APPROX(m1_cr(i, j), m1(rows - 1 - i, j));
|
|
}
|
|
}
|
|
|
|
MatrixType m1_rr = m1.rowwise().reverse();
|
|
// Verify that PartialRedux::reverse() works (for rowwise())
|
|
for ( int i = 0; i < rows; i++ ) {
|
|
for ( int j = 0; j < cols; j++ ) {
|
|
VERIFY_IS_APPROX(m1_rr(i, j), m1(i, cols - 1 - j));
|
|
}
|
|
}
|
|
|
|
Scalar x = internal::random<Scalar>();
|
|
|
|
Index r = internal::random<Index>(0, rows-1),
|
|
c = internal::random<Index>(0, cols-1);
|
|
|
|
m1.reverse()(r, c) = x;
|
|
VERIFY_IS_APPROX(x, m1(rows - 1 - r, cols - 1 - c));
|
|
|
|
m2 = m1;
|
|
m2.reverseInPlace();
|
|
VERIFY_IS_APPROX(m2,m1.reverse().eval());
|
|
|
|
m2 = m1;
|
|
m2.col(0).reverseInPlace();
|
|
VERIFY_IS_APPROX(m2.col(0),m1.col(0).reverse().eval());
|
|
|
|
m2 = m1;
|
|
m2.row(0).reverseInPlace();
|
|
VERIFY_IS_APPROX(m2.row(0),m1.row(0).reverse().eval());
|
|
|
|
m2 = m1;
|
|
m2.rowwise().reverseInPlace();
|
|
VERIFY_IS_APPROX(m2,m1.rowwise().reverse().eval());
|
|
|
|
m2 = m1;
|
|
m2.colwise().reverseInPlace();
|
|
VERIFY_IS_APPROX(m2,m1.colwise().reverse().eval());
|
|
|
|
/*
|
|
m1.colwise().reverse()(r, c) = x;
|
|
VERIFY_IS_APPROX(x, m1(rows - 1 - r, c));
|
|
|
|
m1.rowwise().reverse()(r, c) = x;
|
|
VERIFY_IS_APPROX(x, m1(r, cols - 1 - c));
|
|
*/
|
|
}
|
|
|
|
void test_array_reverse()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( reverse(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST_2( reverse(Matrix2f()) );
|
|
CALL_SUBTEST_3( reverse(Matrix4f()) );
|
|
CALL_SUBTEST_4( reverse(Matrix4d()) );
|
|
CALL_SUBTEST_5( reverse(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
CALL_SUBTEST_6( reverse(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
CALL_SUBTEST_7( reverse(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
CALL_SUBTEST_8( reverse(Matrix<float, 100, 100>()) );
|
|
CALL_SUBTEST_9( reverse(Matrix<float,Dynamic,Dynamic,RowMajor>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
|
}
|
|
#ifdef EIGEN_TEST_PART_3
|
|
Vector4f x; x << 1, 2, 3, 4;
|
|
Vector4f y; y << 4, 3, 2, 1;
|
|
VERIFY(x.reverse()[1] == 3);
|
|
VERIFY(x.reverse() == y);
|
|
#endif
|
|
}
|