mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
75 lines
2.7 KiB
C++
75 lines
2.7 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#define EIGEN2_SUPPORT
|
|
|
|
#include "main.h"
|
|
|
|
template<typename MatrixType> void eigen2support(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m2 = MatrixType::Random(rows, cols),
|
|
m3(rows, cols);
|
|
|
|
Scalar s1 = ei_random<Scalar>(),
|
|
s2 = ei_random<Scalar>();
|
|
|
|
// scalar addition
|
|
VERIFY_IS_APPROX(m1.cwise() + s1, s1 + m1.cwise());
|
|
VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows,cols,s1) + m1);
|
|
VERIFY_IS_APPROX((m1*Scalar(2)).cwise() - s2, (m1+m1) - MatrixType::Constant(rows,cols,s2) );
|
|
m3 = m1;
|
|
m3.cwise() += s2;
|
|
VERIFY_IS_APPROX(m3, m1.cwise() + s2);
|
|
m3 = m1;
|
|
m3.cwise() -= s1;
|
|
VERIFY_IS_APPROX(m3, m1.cwise() - s1);
|
|
|
|
VERIFY_IS_EQUAL((m1.corner(TopLeft,1,1)), (m1.block(0,0,1,1)));
|
|
VERIFY_IS_EQUAL((m1.template corner<1,1>(TopLeft)), (m1.template block<1,1>(0,0)));
|
|
VERIFY_IS_EQUAL((m1.col(0).start(1)), (m1.col(0).segment(0,1)));
|
|
VERIFY_IS_EQUAL((m1.col(0).template start<1>()), (m1.col(0).segment(0,1)));
|
|
VERIFY_IS_EQUAL((m1.col(0).end(1)), (m1.col(0).segment(rows-1,1)));
|
|
VERIFY_IS_EQUAL((m1.col(0).template end<1>()), (m1.col(0).segment(rows-1,1)));
|
|
|
|
m1.minor(0,0);
|
|
}
|
|
|
|
void test_eigen2support()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( eigen2support(Matrix<double,1,1>()) );
|
|
CALL_SUBTEST_2( eigen2support(MatrixXd(1,1)) );
|
|
CALL_SUBTEST_4( eigen2support(Matrix3f()) );
|
|
CALL_SUBTEST_5( eigen2support(Matrix4d()) );
|
|
CALL_SUBTEST_2( eigen2support(MatrixXf(200,200)) );
|
|
CALL_SUBTEST_6( eigen2support(MatrixXcd(100,100)) );
|
|
}
|
|
}
|