eigen/bench/tensors/tensor_benchmarks.h
Yangqing Jia 270c4e1ecd bugfix
2016-01-28 11:11:45 -08:00

310 lines
11 KiB
C++

#ifndef THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
#define THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_
typedef int TensorIndex;
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#include "unsupported/Eigen/CXX11/Tensor"
#include "benchmark.h"
#define BENCHMARK_RANGE(bench, lo, hi) \
BENCHMARK(bench)->Range(lo, hi)
using Eigen::Tensor;
using Eigen::TensorMap;
typedef int64_t int64;
// TODO(bsteiner): also templatize on the input type since we have users
// for int8 as well as floats.
template <typename Device> class BenchmarkSuite {
public:
BenchmarkSuite(const Device& device, size_t m, size_t k, size_t n)
: m_(m), k_(k), n_(n), device_(device) {
initialize();
}
BenchmarkSuite(const Device& device, size_t m)
: m_(m), k_(m), n_(m), device_(device) {
initialize();
}
~BenchmarkSuite() {
device_.deallocate(a_);
device_.deallocate(b_);
device_.deallocate(c_);
}
void memcpy(int num_iters) {
eigen_assert(m_ == k_ && k_ == n_);
StartBenchmarkTiming();
for (int iter = 0; iter < num_iters; ++iter) {
device_.memcpy(c_, a_, m_ * m_ * sizeof(float));
}
// Record the number of values copied per second
finalizeBenchmark(m_ * m_ * num_iters);
}
void random(int num_iters) {
eigen_assert(m_ == k_ && k_ == n_);
const Eigen::array<TensorIndex, 2> sizes = {{m_, m_}};
TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);
StartBenchmarkTiming();
for (int iter = 0; iter < num_iters; ++iter) {
C.device(device_) = C.random();
}
// Record the number of random numbers generated per second
finalizeBenchmark(m_ * m_ * num_iters);
}
void slicing(int num_iters) {
eigen_assert(m_ == k_ && k_ == n_);
const Eigen::array<TensorIndex, 2> sizes = {{m_, m_}};
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes);
const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes);
TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);
const Eigen::DSizes<TensorIndex, 2> quarter_sizes(m_/2, m_/2);
const Eigen::DSizes<TensorIndex, 2> first_quadrant(0, 0);
const Eigen::DSizes<TensorIndex, 2> second_quadrant(0, m_/2);
const Eigen::DSizes<TensorIndex, 2> third_quadrant(m_/2, 0);
const Eigen::DSizes<TensorIndex, 2> fourth_quadrant(m_/2, m_/2);
StartBenchmarkTiming();
for (int iter = 0; iter < num_iters; ++iter) {
C.slice(first_quadrant, quarter_sizes).device(device_) =
A.slice(first_quadrant, quarter_sizes);
C.slice(second_quadrant, quarter_sizes).device(device_) =
B.slice(second_quadrant, quarter_sizes);
C.slice(third_quadrant, quarter_sizes).device(device_) =
A.slice(third_quadrant, quarter_sizes);
C.slice(fourth_quadrant, quarter_sizes).device(device_) =
B.slice(fourth_quadrant, quarter_sizes);
}
// Record the number of values copied from the rhs slice to the lhs slice
// each second
finalizeBenchmark(m_ * m_ * num_iters);
}
void shuffling(int num_iters) {
eigen_assert(m_ == n_);
const Eigen::array<TensorIndex, 2> size_a = {{m_, k_}};
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a);
const Eigen::array<TensorIndex, 2> size_b = {{k_, m_}};
TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b);
const Eigen::array<int, 2> shuffle = {{1, 0}};
StartBenchmarkTiming();
for (int iter = 0; iter < num_iters; ++iter) {
B.device(device_) = A.shuffle(shuffle);
}
// Record the number of values shuffled from A and copied to B each second
finalizeBenchmark(m_ * k_ * num_iters);
}
void padding(int num_iters) {
eigen_assert(m_ == k_);
const Eigen::array<TensorIndex, 2> size_a = {{m_, k_-3}};
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a);
const Eigen::array<TensorIndex, 2> size_b = {{k_, m_}};
TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b);
Eigen::array<Eigen::IndexPair<TensorIndex>, 2> paddings;
paddings[0] = Eigen::IndexPair<TensorIndex>(0, 0);
paddings[1] = Eigen::IndexPair<TensorIndex>(2, 1);
StartBenchmarkTiming();
for (int iter = 0; iter < num_iters; ++iter) {
B.device(device_) = A.pad(paddings);
}
// Record the number of values copied from the padded tensor A each second
finalizeBenchmark(m_ * k_ * num_iters);
}
void striding(int num_iters) {
eigen_assert(m_ == k_);
const Eigen::array<TensorIndex, 2> size_a = {{m_, k_}};
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a);
const Eigen::array<TensorIndex, 2> size_b = {{m_, k_ / 2}};
TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b);
const Eigen::array<TensorIndex, 2> strides = {{1, 2}};
StartBenchmarkTiming();
for (int iter = 0; iter < num_iters; ++iter) {
B.device(device_) = A.stride(strides);
}
// Record the number of values copied from the padded tensor A each second
finalizeBenchmark(m_ * k_ * num_iters);
}
void broadcasting(int num_iters) {
const Eigen::array<TensorIndex, 2> size_a = {{m_, 1}};
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a);
const Eigen::array<TensorIndex, 2> size_c = {{m_, n_}};
TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, size_c);
#ifndef EIGEN_HAS_INDEX_LIST
// nvcc doesn't support cxx11
const Eigen::array<int, 2> broadcast = {{1, n_}};
#else
// Take advantage of cxx11 to give the compiler information it can use to
// optimize the code.
Eigen::IndexList<Eigen::type2index<1>, int> broadcast;
broadcast.set(1, n_);
#endif
StartBenchmarkTiming();
for (int iter = 0; iter < num_iters; ++iter) {
C.device(device_) = A.broadcast(broadcast);
}
// Record the number of values broadcasted from A and copied to C each second
finalizeBenchmark(m_ * n_ * num_iters);
}
void coeffWiseOp(int num_iters) {
eigen_assert(m_ == k_ && k_ == n_);
const Eigen::array<TensorIndex, 2> sizes = {{m_, m_}};
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes);
const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes);
TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);
StartBenchmarkTiming();
for (int iter = 0; iter < num_iters; ++iter) {
C.device(device_) = A * A.constant(3.14) + B * B.constant(2.7);
}
// Record the number of FLOP executed per second (2 multiplications and
// 1 addition per value)
finalizeBenchmark(3 * m_ * m_ * num_iters);
}
void algebraicFunc(int num_iters) {
eigen_assert(m_ == k_ && k_ == n_);
const Eigen::array<TensorIndex, 2> sizes = {{m_, m_}};
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes);
const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes);
TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);
StartBenchmarkTiming();
for (int iter = 0; iter < num_iters; ++iter) {
C.device(device_) = A.rsqrt() + B.sqrt() * B.square();
}
// Record the number of FLOP executed per second (assuming one operation
// per value)
finalizeBenchmark(m_ * m_ * num_iters);
}
void transcendentalFunc(int num_iters) {
eigen_assert(m_ == k_ && k_ == n_);
const Eigen::array<TensorIndex, 2> sizes = {{m_, m_}};
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes);
const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes);
TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes);
StartBenchmarkTiming();
for (int iter = 0; iter < num_iters; ++iter) {
C.device(device_) = A.exp() + B.log();
}
// Record the number of FLOP executed per second (assuming one operation
// per value)
finalizeBenchmark(m_ * m_ * num_iters);
}
// Simple reduction
void reduction(int num_iters) {
const Eigen::array<TensorIndex, 2> input_size = {{k_, n_}};
const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, input_size);
const Eigen::array<TensorIndex, 1> output_size = {{n_}};
TensorMap<Tensor<float, 1>, Eigen::Aligned> C(c_, output_size);
const Eigen::array<TensorIndex, 1> sum_along_dim = {{0}};
StartBenchmarkTiming();
for (int iter = 0; iter < num_iters; ++iter) {
C.device(device_) = B.sum(sum_along_dim);
}
// Record the number of FLOP executed per second (assuming one operation
// per value)
finalizeBenchmark(m_ * m_ * num_iters);
}
// do a contraction which is equivalent to a matrix multiplication
void contraction(int num_iters) {
const Eigen::array<TensorIndex, 2> sizeA = {{m_, k_}};
const Eigen::array<TensorIndex, 2> sizeB = {{k_, n_}};
const Eigen::array<TensorIndex, 2> sizeC = {{m_, n_}};
const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizeA);
const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizeB);
TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizeC);
typedef typename Tensor<float, 2>::DimensionPair DimPair;
const Eigen::array<DimPair, 1> dims = {{DimPair(1, 0)}};
StartBenchmarkTiming();
for (int iter = 0; iter < num_iters; ++iter) {
C.device(device_) = A.contract(B, dims);
}
// Record the number of FLOP executed per second (size_ multiplications and
// additions for each value in the resulting tensor)
finalizeBenchmark(static_cast<int64>(2) * m_ * n_ * k_ * num_iters);
}
void convolution(int num_iters, int kernel_x, int kernel_y) {
const Eigen::array<TensorIndex, 2> input_sizes = {{m_, n_}};
TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, input_sizes);
const Eigen::array<TensorIndex, 2> kernel_sizes = {{kernel_x, kernel_y}};
TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, kernel_sizes);
const Eigen::array<TensorIndex, 2> result_sizes =
{{m_ - kernel_x + 1, n_ - kernel_y + 1}};
TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, result_sizes);
Eigen::array<Tensor<float, 2>::Index, 2> dims = {{0, 1}};
StartBenchmarkTiming();
for (int iter = 0; iter < num_iters; ++iter) {
C.device(device_) = A.convolve(B, dims);
}
// Record the number of FLOP executed per second (kernel_size
// multiplications and additions for each value in the resulting tensor)
finalizeBenchmark(
(m_ - kernel_x + 1) * (n_ - kernel_y + 1) * kernel_x * kernel_y * 2 * num_iters);
}
private:
void initialize() {
a_ = (float *) device_.allocate(m_ * k_ * sizeof(float));
b_ = (float *) device_.allocate(k_ * n_ * sizeof(float));
c_ = (float *) device_.allocate(m_ * n_ * sizeof(float));
// Initialize the content of the memory pools to prevent asan from
// complaining.
device_.memset(a_, 12, m_ * k_ * sizeof(float));
device_.memset(b_, 23, k_ * n_ * sizeof(float));
device_.memset(c_, 31, m_ * n_ * sizeof(float));
//BenchmarkUseRealTime();
}
inline void finalizeBenchmark(int64 num_items) {
#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
if (Eigen::internal::is_same<Device, Eigen::GpuDevice>::value) {
device_.synchronize();
}
#endif
StopBenchmarkTiming();
SetBenchmarkBytesProcessed(num_items);
}
TensorIndex m_;
TensorIndex k_;
TensorIndex n_;
float* a_;
float* b_;
float* c_;
Device device_;
};
#endif // THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_