eigen/disabled/Product.h
Benoit Jacob 6347b1db5b remove sentence "Eigen itself is part of the KDE project."
it never made very precise sense. but now does it still make any?
2009-05-22 20:25:33 +02:00

490 lines
18 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_PRODUCT_H
#define EIGEN_PRODUCT_H
template<int Index, int Size, typename Lhs, typename Rhs>
struct ei_product_unroller
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs,
typename Lhs::Scalar &res)
{
ei_product_unroller<Index-1, Size, Lhs, Rhs>::run(row, col, lhs, rhs, res);
res += lhs.coeff(row, Index) * rhs.coeff(Index, col);
}
};
template<int Size, typename Lhs, typename Rhs>
struct ei_product_unroller<0, Size, Lhs, Rhs>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs,
typename Lhs::Scalar &res)
{
res = lhs.coeff(row, 0) * rhs.coeff(0, col);
}
};
template<int Index, typename Lhs, typename Rhs>
struct ei_product_unroller<Index, Dynamic, Lhs, Rhs>
{
inline static void run(int, int, const Lhs&, const Rhs&, typename Lhs::Scalar&) {}
};
// prevent buggy user code from causing an infinite recursion
template<int Index, typename Lhs, typename Rhs>
struct ei_product_unroller<Index, 0, Lhs, Rhs>
{
inline static void run(int, int, const Lhs&, const Rhs&, typename Lhs::Scalar&) {}
};
template<typename Lhs, typename Rhs>
struct ei_product_unroller<0, Dynamic, Lhs, Rhs>
{
static void run(int, int, const Lhs&, const Rhs&, typename Lhs::Scalar&) {}
};
template<bool RowMajor, int Index, int Size, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_packet_product_unroller;
template<int Index, int Size, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_packet_product_unroller<true, Index, Size, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
ei_packet_product_unroller<true, Index-1, Size, Lhs, Rhs, PacketScalar>::run(row, col, lhs, rhs, res);
res = ei_pmadd(ei_pset1(lhs.coeff(row, Index)), rhs.template packet<Aligned>(Index, col), res);
}
};
template<int Index, int Size, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_packet_product_unroller<false, Index, Size, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
ei_packet_product_unroller<false, Index-1, Size, Lhs, Rhs, PacketScalar>::run(row, col, lhs, rhs, res);
res = ei_pmadd(lhs.template packet<Aligned>(row, Index), ei_pset1(rhs.coeff(Index, col)), res);
}
};
template<int Size, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_packet_product_unroller<true, 0, Size, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
res = ei_pmul(ei_pset1(lhs.coeff(row, 0)),rhs.template packet<Aligned>(0, col));
}
};
template<int Size, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_packet_product_unroller<false, 0, Size, Lhs, Rhs, PacketScalar>
{
inline static void run(int row, int col, const Lhs& lhs, const Rhs& rhs, PacketScalar &res)
{
res = ei_pmul(lhs.template packet<Aligned>(row, 0), ei_pset1(rhs.coeff(0, col)));
}
};
template<bool RowMajor, int Index, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_packet_product_unroller<RowMajor, Index, Dynamic, Lhs, Rhs, PacketScalar>
{
inline static void run(int, int, const Lhs&, const Rhs&, PacketScalar&) {}
};
template<int Index, typename Lhs, typename Rhs, typename PacketScalar>
struct ei_packet_product_unroller<false, Index, Dynamic, Lhs, Rhs, PacketScalar>
{
inline static void run(int, int, const Lhs&, const Rhs&, PacketScalar&) {}
};
template<typename Lhs, typename Rhs, typename PacketScalar>
struct ei_packet_product_unroller<false, 0, Dynamic, Lhs, Rhs, PacketScalar>
{
static void run(int, int, const Lhs&, const Rhs&, PacketScalar&) {}
};
template<typename Product, bool RowMajor = true> struct ProductPacketImpl {
inline static typename Product::PacketScalar execute(const Product& product, int row, int col)
{ return product._packetRowMajor(row,col); }
};
template<typename Product> struct ProductPacketImpl<Product, false> {
inline static typename Product::PacketScalar execute(const Product& product, int row, int col)
{ return product._packetColumnMajor(row,col); }
};
/** \class Product
*
* \brief Expression of the product of two matrices
*
* \param Lhs the type of the left-hand side
* \param Rhs the type of the right-hand side
* \param EvalMode internal use only
*
* This class represents an expression of the product of two matrices.
* It is the return type of the operator* between matrices, and most of the time
* this is the only way it is used.
*
* \sa class Sum, class Difference
*/
template<typename Lhs, typename Rhs> struct ei_product_eval_mode
{
enum{ value = Lhs::MaxRowsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
&& Rhs::MaxColsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
&& (!( (Lhs::Flags&RowMajorBit) && ((Rhs::Flags&RowMajorBit) ^ RowMajorBit)))
? CacheFriendlyProduct : NormalProduct };
};
template<typename Lhs, typename Rhs, int EvalMode>
struct ei_traits<Product<Lhs, Rhs, EvalMode> >
{
typedef typename Lhs::Scalar Scalar;
typedef typename ei_nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
typedef typename ei_nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
typedef typename ei_unref<LhsNested>::type _LhsNested;
typedef typename ei_unref<RhsNested>::type _RhsNested;
enum {
LhsCoeffReadCost = _LhsNested::CoeffReadCost,
RhsCoeffReadCost = _RhsNested::CoeffReadCost,
LhsFlags = _LhsNested::Flags,
RhsFlags = _RhsNested::Flags,
RowsAtCompileTime = Lhs::RowsAtCompileTime,
ColsAtCompileTime = Rhs::ColsAtCompileTime,
MaxRowsAtCompileTime = Lhs::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Rhs::MaxColsAtCompileTime,
_RhsPacketAccess = (RhsFlags & RowMajorBit) && (RhsFlags & PacketAccessBit) && (ColsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
_LhsPacketAccess = (!(LhsFlags & RowMajorBit)) && (LhsFlags & PacketAccessBit) && (RowsAtCompileTime % ei_packet_traits<Scalar>::size == 0),
_PacketAccess = (_LhsPacketAccess || _RhsPacketAccess) ? 1 : 0,
_RowMajor = (RhsFlags & RowMajorBit)
&& (EvalMode==(int)CacheFriendlyProduct ? (int)LhsFlags & RowMajorBit : (!_LhsPacketAccess)),
_LostBits = HereditaryBits & ~(
(_RowMajor ? 0 : RowMajorBit)
| ((RowsAtCompileTime == Dynamic || ColsAtCompileTime == Dynamic) ? 0 : LargeBit)),
Flags = ((unsigned int)(LhsFlags | RhsFlags) & _LostBits)
| EvalBeforeAssigningBit
| EvalBeforeNestingBit
| (_PacketAccess ? PacketAccessBit : 0),
CoeffReadCost
= Lhs::ColsAtCompileTime == Dynamic
? Dynamic
: Lhs::ColsAtCompileTime
* (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
+ (Lhs::ColsAtCompileTime - 1) * NumTraits<Scalar>::AddCost
};
};
template<typename Lhs, typename Rhs, int EvalMode> class Product : ei_no_assignment_operator,
public MatrixBase<Product<Lhs, Rhs, EvalMode> >
{
public:
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
friend class ProductPacketImpl<Product,Flags&RowMajorBit>;
typedef typename ei_traits<Product>::LhsNested LhsNested;
typedef typename ei_traits<Product>::RhsNested RhsNested;
typedef typename ei_traits<Product>::_LhsNested _LhsNested;
typedef typename ei_traits<Product>::_RhsNested _RhsNested;
inline Product(const Lhs& lhs, const Rhs& rhs)
: m_lhs(lhs), m_rhs(rhs)
{
ei_assert(lhs.cols() == rhs.rows());
}
/** \internal */
template<typename DestDerived, int AlignedMode>
void _cacheOptimalEval(DestDerived& res, ei_meta_false) const;
#ifdef EIGEN_VECTORIZE
template<typename DestDerived, int AlignedMode>
void _cacheOptimalEval(DestDerived& res, ei_meta_true) const;
#endif
private:
inline int _rows() const { return m_lhs.rows(); }
inline int _cols() const { return m_rhs.cols(); }
const Scalar _coeff(int row, int col) const
{
Scalar res;
const bool unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT;
if(unroll)
{
ei_product_unroller<Lhs::ColsAtCompileTime-1,
unroll ? Lhs::ColsAtCompileTime : Dynamic,
_LhsNested, _RhsNested>
::run(row, col, m_lhs, m_rhs, res);
}
else
{
res = m_lhs.coeff(row, 0) * m_rhs.coeff(0, col);
for(int i = 1; i < m_lhs.cols(); i++)
res += m_lhs.coeff(row, i) * m_rhs.coeff(i, col);
}
return res;
}
template<int LoadMode>
const PacketScalar _packet(int row, int col) const
{
if(Lhs::ColsAtCompileTime <= EIGEN_UNROLLING_LIMIT)
{
PacketScalar res;
ei_packet_product_unroller<Flags&RowMajorBit, Lhs::ColsAtCompileTime-1,
Lhs::ColsAtCompileTime <= EIGEN_UNROLLING_LIMIT
? Lhs::ColsAtCompileTime : Dynamic,
_LhsNested, _RhsNested, PacketScalar>
::run(row, col, m_lhs, m_rhs, res);
return res;
}
else
return ProductPacketImpl<Product,Flags&RowMajorBit>::execute(*this, row, col);
}
const PacketScalar _packetRowMajor(int row, int col) const
{
PacketScalar res;
res = ei_pmul(ei_pset1(m_lhs.coeff(row, 0)),m_rhs.template packet<Aligned>(0, col));
for(int i = 1; i < m_lhs.cols(); i++)
res = ei_pmadd(ei_pset1(m_lhs.coeff(row, i)), m_rhs.template packet<Aligned>(i, col), res);
return res;
}
const PacketScalar _packetColumnMajor(int row, int col) const
{
PacketScalar res;
res = ei_pmul(m_lhs.template packet<Aligned>(row, 0), ei_pset1(m_rhs.coeff(0, col)));
for(int i = 1; i < m_lhs.cols(); i++)
res = ei_pmadd(m_lhs.template packet<Aligned>(row, i), ei_pset1(m_rhs.coeff(i, col)), res);
return res;
// const PacketScalar tmp[4];
// ei_punpack(m_rhs.packet(0,col), tmp);
//
// return
// ei_pmadd(m_lhs.packet(row, 0), tmp[0],
// ei_pmadd(m_lhs.packet(row, 1), tmp[1],
// ei_pmadd(m_lhs.packet(row, 2), tmp[2]
// ei_pmul(m_lhs.packet(row, 3), tmp[3]))));
}
protected:
const LhsNested m_lhs;
const RhsNested m_rhs;
};
/** \returns the matrix product of \c *this and \a other.
*
* \note This function causes an immediate evaluation. If you want to perform a matrix product
* without immediate evaluation, call .lazy() on one of the matrices before taking the product.
*
* \sa lazy(), operator*=(const MatrixBase&)
*/
template<typename Derived>
template<typename OtherDerived>
inline const Product<Derived,OtherDerived>
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
{
return Product<Derived,OtherDerived>(derived(), other.derived());
}
/** replaces \c *this by \c *this * \a other.
*
* \returns a reference to \c *this
*/
template<typename Derived>
template<typename OtherDerived>
inline Derived &
MatrixBase<Derived>::operator*=(const MatrixBase<OtherDerived> &other)
{
return *this = *this * other;
}
template<typename Derived>
template<typename Lhs, typename Rhs>
inline Derived& MatrixBase<Derived>::lazyAssign(const Product<Lhs,Rhs,CacheFriendlyProduct>& product)
{
product.template _cacheOptimalEval<Derived, Aligned>(derived(),
#ifdef EIGEN_VECTORIZE
typename ei_meta_if<Flags & PacketAccessBit, ei_meta_true, ei_meta_false>::ret()
#else
ei_meta_false()
#endif
);
return derived();
}
template<typename Lhs, typename Rhs, int EvalMode>
template<typename DestDerived, int AlignedMode>
void Product<Lhs,Rhs,EvalMode>::_cacheOptimalEval(DestDerived& res, ei_meta_false) const
{
res.setZero();
const int cols4 = m_lhs.cols() & 0xfffffffC;
if (Lhs::Flags&RowMajorBit)
{
// std::cout << "opt rhs\n";
int j=0;
for(; j<cols4; j+=4)
{
for(int k=0; k<this->rows(); ++k)
{
const Scalar tmp0 = m_lhs.coeff(k,j );
const Scalar tmp1 = m_lhs.coeff(k,j+1);
const Scalar tmp2 = m_lhs.coeff(k,j+2);
const Scalar tmp3 = m_lhs.coeff(k,j+3);
for (int i=0; i<this->cols(); ++i)
res.coeffRef(k,i) += tmp0 * m_rhs.coeff(j+0,i) + tmp1 * m_rhs.coeff(j+1,i)
+ tmp2 * m_rhs.coeff(j+2,i) + tmp3 * m_rhs.coeff(j+3,i);
}
}
for(; j<m_lhs.cols(); ++j)
{
for(int k=0; k<this->rows(); ++k)
{
const Scalar tmp = m_rhs.coeff(k,j);
for (int i=0; i<this->cols(); ++i)
res.coeffRef(k,i) += tmp * m_lhs.coeff(j,i);
}
}
}
else
{
// std::cout << "opt lhs\n";
int j = 0;
for(; j<cols4; j+=4)
{
for(int k=0; k<this->cols(); ++k)
{
const Scalar tmp0 = m_rhs.coeff(j ,k);
const Scalar tmp1 = m_rhs.coeff(j+1,k);
const Scalar tmp2 = m_rhs.coeff(j+2,k);
const Scalar tmp3 = m_rhs.coeff(j+3,k);
for (int i=0; i<this->rows(); ++i)
res.coeffRef(i,k) += tmp0 * m_lhs.coeff(i,j+0) + tmp1 * m_lhs.coeff(i,j+1)
+ tmp2 * m_lhs.coeff(i,j+2) + tmp3 * m_lhs.coeff(i,j+3);
}
}
for(; j<m_lhs.cols(); ++j)
{
for(int k=0; k<this->cols(); ++k)
{
const Scalar tmp = m_rhs.coeff(j,k);
for (int i=0; i<this->rows(); ++i)
res.coeffRef(i,k) += tmp * m_lhs.coeff(i,j);
}
}
}
}
#ifdef EIGEN_VECTORIZE
template<typename Lhs, typename Rhs, int EvalMode>
template<typename DestDerived, int AlignedMode>
void Product<Lhs,Rhs,EvalMode>::_cacheOptimalEval(DestDerived& res, ei_meta_true) const
{
if (((Lhs::Flags&RowMajorBit) && (_cols() % ei_packet_traits<Scalar>::size != 0))
|| (_rows() % ei_packet_traits<Scalar>::size != 0))
{
return _cacheOptimalEval<DestDerived, AlignedMode>(res, ei_meta_false());
}
res.setZero();
const int cols4 = m_lhs.cols() & 0xfffffffC;
if (Lhs::Flags&RowMajorBit)
{
// std::cout << "packet rhs\n";
int j=0;
for(; j<cols4; j+=4)
{
for(int k=0; k<this->rows(); k++)
{
const typename ei_packet_traits<Scalar>::type tmp0 = ei_pset1(m_lhs.coeff(k,j+0));
const typename ei_packet_traits<Scalar>::type tmp1 = ei_pset1(m_lhs.coeff(k,j+1));
const typename ei_packet_traits<Scalar>::type tmp2 = ei_pset1(m_lhs.coeff(k,j+2));
const typename ei_packet_traits<Scalar>::type tmp3 = ei_pset1(m_lhs.coeff(k,j+3));
for (int i=0; i<this->cols(); i+=ei_packet_traits<Scalar>::size)
{
res.template writePacket<AlignedMode>(k,i,
ei_pmadd(tmp0, m_rhs.template packet<AlignedMode>(j+0,i),
ei_pmadd(tmp1, m_rhs.template packet<AlignedMode>(j+1,i),
ei_pmadd(tmp2, m_rhs.template packet<AlignedMode>(j+2,i),
ei_pmadd(tmp3, m_rhs.template packet<AlignedMode>(j+3,i),
res.template packet<AlignedMode>(k,i)))))
);
}
}
}
for(; j<m_lhs.cols(); ++j)
{
for(int k=0; k<this->rows(); k++)
{
const typename ei_packet_traits<Scalar>::type tmp = ei_pset1(m_lhs.coeff(k,j));
for (int i=0; i<this->cols(); i+=ei_packet_traits<Scalar>::size)
res.template writePacket<AlignedMode>(k,i,
ei_pmadd(tmp, m_rhs.template packet<AlignedMode>(j,i), res.template packet<AlignedMode>(k,i)));
}
}
}
else
{
// std::cout << "packet lhs\n";
int k=0;
for(; k<cols4; k+=4)
{
for(int j=0; j<this->cols(); j+=1)
{
const typename ei_packet_traits<Scalar>::type tmp0 = ei_pset1(m_rhs.coeff(k+0,j));
const typename ei_packet_traits<Scalar>::type tmp1 = ei_pset1(m_rhs.coeff(k+1,j));
const typename ei_packet_traits<Scalar>::type tmp2 = ei_pset1(m_rhs.coeff(k+2,j));
const typename ei_packet_traits<Scalar>::type tmp3 = ei_pset1(m_rhs.coeff(k+3,j));
for (int i=0; i<this->rows(); i+=ei_packet_traits<Scalar>::size)
{
res.template writePacket<AlignedMode>(i,j,
ei_pmadd(tmp0, m_lhs.template packet<AlignedMode>(i,k),
ei_pmadd(tmp1, m_lhs.template packet<AlignedMode>(i,k+1),
ei_pmadd(tmp2, m_lhs.template packet<AlignedMode>(i,k+2),
ei_pmadd(tmp3, m_lhs.template packet<AlignedMode>(i,k+3),
res.template packet<AlignedMode>(i,j)))))
);
}
}
}
for(; k<m_lhs.cols(); ++k)
{
for(int j=0; j<this->cols(); j++)
{
const typename ei_packet_traits<Scalar>::type tmp = ei_pset1(m_rhs.coeff(k,j));
for (int i=0; i<this->rows(); i+=ei_packet_traits<Scalar>::size)
res.template writePacket<AlignedMode>(k,j,
ei_pmadd(tmp, m_lhs.template packet<AlignedMode>(i,k), res.template packet<AlignedMode>(i,j)));
}
}
}
}
#endif // EIGEN_VECTORIZE
#endif // EIGEN_PRODUCT_H