mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
f0394edfa7
* bugfix in Dot unroller * added special random generator for the unit tests and reduced the tolerance threshold by an order of magnitude this fixes issues with sum.cpp but other tests still failed sometimes, this have to be carefully checked...
116 lines
4.5 KiB
C++
116 lines
4.5 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
|
|
template<typename MatrixType> void basicStuff(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
// this test relies a lot on Random.h, and there's not much more that we can do
|
|
// to test it, hence I consider that we will have tested Random.h
|
|
MatrixType m1 = test_random_matrix<MatrixType>(rows, cols),
|
|
m2 = test_random_matrix<MatrixType>(rows, cols),
|
|
m3(rows, cols),
|
|
mzero = MatrixType::Zero(rows, cols),
|
|
identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
|
|
::Identity(rows, rows),
|
|
square = test_random_matrix<Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> >(rows, rows);
|
|
VectorType v1 = test_random_matrix<VectorType>(rows),
|
|
v2 = test_random_matrix<VectorType>(rows),
|
|
vzero = VectorType::Zero(rows);
|
|
|
|
Scalar x = test_random<Scalar>();
|
|
|
|
int r = ei_random<int>(0, rows-1),
|
|
c = ei_random<int>(0, cols-1);
|
|
|
|
m1.coeffRef(r,c) = x;
|
|
VERIFY_IS_APPROX(x, m1.coeff(r,c));
|
|
m1(r,c) = x;
|
|
VERIFY_IS_APPROX(x, m1(r,c));
|
|
v1.coeffRef(r) = x;
|
|
VERIFY_IS_APPROX(x, v1.coeff(r));
|
|
v1(r) = x;
|
|
VERIFY_IS_APPROX(x, v1(r));
|
|
v1[r] = x;
|
|
VERIFY_IS_APPROX(x, v1[r]);
|
|
|
|
VERIFY_IS_APPROX( v1, v1);
|
|
VERIFY_IS_NOT_APPROX( v1, 2*v1);
|
|
VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1);
|
|
if(NumTraits<Scalar>::HasFloatingPoint)
|
|
VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.norm());
|
|
VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1);
|
|
VERIFY_IS_APPROX( vzero, v1-v1);
|
|
VERIFY_IS_APPROX( m1, m1);
|
|
VERIFY_IS_NOT_APPROX( m1, 2*m1);
|
|
VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1);
|
|
VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1);
|
|
VERIFY_IS_APPROX( mzero, m1-m1);
|
|
|
|
// always test operator() on each read-only expression class,
|
|
// in order to check const-qualifiers.
|
|
// indeed, if an expression class (here Zero) is meant to be read-only,
|
|
// hence has no _write() method, the corresponding MatrixBase method (here zero())
|
|
// should return a const-qualified object so that it is the const-qualified
|
|
// operator() that gets called, which in turn calls _read().
|
|
VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
|
|
|
|
// now test copying a row-vector into a (column-)vector and conversely.
|
|
square.col(r) = square.row(r).eval();
|
|
Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
|
|
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
|
|
rv = square.row(r);
|
|
cv = square.col(r);
|
|
VERIFY_IS_APPROX(rv, cv.transpose());
|
|
|
|
if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
|
|
{
|
|
VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
|
|
}
|
|
|
|
// test swap
|
|
m3 = m1;
|
|
m1.swap(m2);
|
|
VERIFY_IS_APPROX(m3, m2);
|
|
VERIFY_IS_NOT_APPROX(m3, m1);
|
|
}
|
|
|
|
void test_basicstuff()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST( basicStuff(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST( basicStuff(Matrix4d()) );
|
|
CALL_SUBTEST( basicStuff(MatrixXcf(3, 3)) );
|
|
CALL_SUBTEST( basicStuff(MatrixXi(8, 12)) );
|
|
CALL_SUBTEST( basicStuff(MatrixXcd(20, 20)) );
|
|
CALL_SUBTEST( basicStuff(Matrix<float, 100, 100>()) );
|
|
}
|
|
}
|