eigen/unsupported/test/cxx11_tensor_cuda.cu
2016-01-27 14:58:48 -08:00

654 lines
24 KiB
Plaintext

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// TODO(mdevin): Free the cuda memory.
#define EIGEN_TEST_NO_LONGDOUBLE
#define EIGEN_TEST_NO_COMPLEX
#define EIGEN_TEST_FUNC cxx11_tensor_cuda
#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
#define EIGEN_USE_GPU
#include "main.h"
#include <unsupported/Eigen/CXX11/Tensor>
using Eigen::Tensor;
void test_cuda_elementwise_small() {
Tensor<float, 1> in1(Eigen::array<int, 1>(2));
Tensor<float, 1> in2(Eigen::array<int, 1>(2));
Tensor<float, 1> out(Eigen::array<int, 1>(2));
in1.setRandom();
in2.setRandom();
std::size_t in1_bytes = in1.size() * sizeof(float);
std::size_t in2_bytes = in2.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_in1;
float* d_in2;
float* d_out;
cudaMalloc((void**)(&d_in1), in1_bytes);
cudaMalloc((void**)(&d_in2), in2_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_in2, in2.data(), in2_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_in1(
d_in1, Eigen::array<int, 1>(2));
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_in2(
d_in2, Eigen::array<int, 1>(2));
Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_out(
d_out, Eigen::array<int, 1>(2));
gpu_out.device(gpu_device) = gpu_in1 + gpu_in2;
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost,
gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 2; ++i) {
VERIFY_IS_APPROX(
out(Eigen::array<int, 1>(i)),
in1(Eigen::array<int, 1>(i)) + in2(Eigen::array<int, 1>(i)));
}
}
void test_cuda_elementwise()
{
Tensor<float, 3> in1(Eigen::array<int, 3>(72,53,97));
Tensor<float, 3> in2(Eigen::array<int, 3>(72,53,97));
Tensor<float, 3> in3(Eigen::array<int, 3>(72,53,97));
Tensor<float, 3> out(Eigen::array<int, 3>(72,53,97));
in1.setRandom();
in2.setRandom();
in3.setRandom();
std::size_t in1_bytes = in1.size() * sizeof(float);
std::size_t in2_bytes = in2.size() * sizeof(float);
std::size_t in3_bytes = in3.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_in1;
float* d_in2;
float* d_in3;
float* d_out;
cudaMalloc((void**)(&d_in1), in1_bytes);
cudaMalloc((void**)(&d_in2), in2_bytes);
cudaMalloc((void**)(&d_in3), in3_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_in2, in2.data(), in2_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_in3, in3.data(), in3_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in1(d_in1, Eigen::array<int, 3>(72,53,97));
Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in2(d_in2, Eigen::array<int, 3>(72,53,97));
Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in3(d_in3, Eigen::array<int, 3>(72,53,97));
Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_out(d_out, Eigen::array<int, 3>(72,53,97));
gpu_out.device(gpu_device) = gpu_in1 + gpu_in2 * gpu_in3;
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 72; ++i) {
for (int j = 0; j < 53; ++j) {
for (int k = 0; k < 97; ++k) {
VERIFY_IS_APPROX(out(Eigen::array<int, 3>(i,j,k)), in1(Eigen::array<int, 3>(i,j,k)) + in2(Eigen::array<int, 3>(i,j,k)) * in3(Eigen::array<int, 3>(i,j,k)));
}
}
}
}
void test_cuda_reduction()
{
Tensor<float, 4> in1(72,53,97,113);
Tensor<float, 2> out(72,97);
in1.setRandom();
std::size_t in1_bytes = in1.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_in1;
float* d_out;
cudaMalloc((void**)(&d_in1), in1_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4> > gpu_in1(d_in1, 72,53,97,113);
Eigen::TensorMap<Eigen::Tensor<float, 2> > gpu_out(d_out, 72,97);
array<int, 2> reduction_axis;
reduction_axis[0] = 1;
reduction_axis[1] = 3;
gpu_out.device(gpu_device) = gpu_in1.maximum(reduction_axis);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 72; ++i) {
for (int j = 0; j < 97; ++j) {
float expected = 0;
for (int k = 0; k < 53; ++k) {
for (int l = 0; l < 113; ++l) {
expected =
std::max<float>(expected, in1(i, k, j, l));
}
}
VERIFY_IS_APPROX(out(i,j), expected);
}
}
}
template<int DataLayout>
static void test_cuda_contraction()
{
// with these dimensions, the output has 300 * 140 elements, which is
// more than 30 * 1024, which is the number of threads in blocks on
// a 15 SM GK110 GPU
Tensor<float, 4, DataLayout> t_left(6, 50, 3, 31);
Tensor<float, 5, DataLayout> t_right(Eigen::array<int, 5>(3, 31, 7, 20, 1));
Tensor<float, 5, DataLayout> t_result(Eigen::array<int, 5>(6, 50, 7, 20, 1));
t_left.setRandom();
t_right.setRandom();
std::size_t t_left_bytes = t_left.size() * sizeof(float);
std::size_t t_right_bytes = t_right.size() * sizeof(float);
std::size_t t_result_bytes = t_result.size() * sizeof(float);
float* d_t_left;
float* d_t_right;
float* d_t_result;
cudaMalloc((void**)(&d_t_left), t_left_bytes);
cudaMalloc((void**)(&d_t_right), t_right_bytes);
cudaMalloc((void**)(&d_t_result), t_result_bytes);
cudaMemcpy(d_t_left, t_left.data(), t_left_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_t_right, t_right.data(), t_right_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_t_left(d_t_left, 6, 50, 3, 31);
Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_t_right(d_t_right, 3, 31, 7, 20, 1);
Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_t_result(d_t_result, 6, 50, 7, 20, 1);
typedef Eigen::Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> > MapXf;
MapXf m_left(t_left.data(), 300, 93);
MapXf m_right(t_right.data(), 93, 140);
Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(300, 140);
typedef Tensor<float, 1>::DimensionPair DimPair;
Eigen::array<DimPair, 2> dims;
dims[0] = DimPair(2, 0);
dims[1] = DimPair(3, 1);
m_result = m_left * m_right;
gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims);
cudaMemcpy(t_result.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost);
for (size_t i = 0; i < t_result.dimensions().TotalSize(); i++) {
if (fabs(t_result.data()[i] - m_result.data()[i]) >= 1e-4) {
std::cout << "mismatch detected at index " << i << ": " << t_result.data()[i] << " vs " << m_result.data()[i] << std::endl;
assert(false);
}
}
}
template<int DataLayout>
static void test_cuda_convolution_1d()
{
Tensor<float, 4, DataLayout> input(74,37,11,137);
Tensor<float, 1, DataLayout> kernel(4);
Tensor<float, 4, DataLayout> out(74,34,11,137);
input = input.constant(10.0f) + input.random();
kernel = kernel.constant(7.0f) + kernel.random();
std::size_t input_bytes = input.size() * sizeof(float);
std::size_t kernel_bytes = kernel.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_input;
float* d_kernel;
float* d_out;
cudaMalloc((void**)(&d_input), input_bytes);
cudaMalloc((void**)(&d_kernel), kernel_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_input(d_input, 74,37,11,137);
Eigen::TensorMap<Eigen::Tensor<float, 1, DataLayout> > gpu_kernel(d_kernel, 4);
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_out(d_out, 74,34,11,137);
Eigen::array<int, 1> dims(1);
gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 74; ++i) {
for (int j = 0; j < 34; ++j) {
for (int k = 0; k < 11; ++k) {
for (int l = 0; l < 137; ++l) {
const float result = out(i,j,k,l);
const float expected = input(i,j+0,k,l) * kernel(0) + input(i,j+1,k,l) * kernel(1) +
input(i,j+2,k,l) * kernel(2) + input(i,j+3,k,l) * kernel(3);
VERIFY_IS_APPROX(result, expected);
}
}
}
}
}
static void test_cuda_convolution_inner_dim_col_major_1d()
{
Tensor<float, 4, ColMajor> input(74,9,11,7);
Tensor<float, 1, ColMajor> kernel(4);
Tensor<float, 4, ColMajor> out(71,9,11,7);
input = input.constant(10.0f) + input.random();
kernel = kernel.constant(7.0f) + kernel.random();
std::size_t input_bytes = input.size() * sizeof(float);
std::size_t kernel_bytes = kernel.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_input;
float* d_kernel;
float* d_out;
cudaMalloc((void**)(&d_input), input_bytes);
cudaMalloc((void**)(&d_kernel), kernel_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4, ColMajor> > gpu_input(d_input,74,9,11,7);
Eigen::TensorMap<Eigen::Tensor<float, 1, ColMajor> > gpu_kernel(d_kernel,4);
Eigen::TensorMap<Eigen::Tensor<float, 4, ColMajor> > gpu_out(d_out,71,9,11,7);
Eigen::array<int, 1> dims(0);
gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 71; ++i) {
for (int j = 0; j < 9; ++j) {
for (int k = 0; k < 11; ++k) {
for (int l = 0; l < 7; ++l) {
const float result = out(i,j,k,l);
const float expected = input(i+0,j,k,l) * kernel(0) + input(i+1,j,k,l) * kernel(1) +
input(i+2,j,k,l) * kernel(2) + input(i+3,j,k,l) * kernel(3);
VERIFY_IS_APPROX(result, expected);
}
}
}
}
}
static void test_cuda_convolution_inner_dim_row_major_1d()
{
Tensor<float, 4, RowMajor> input(7,9,11,74);
Tensor<float, 1, RowMajor> kernel(4);
Tensor<float, 4, RowMajor> out(7,9,11,71);
input = input.constant(10.0f) + input.random();
kernel = kernel.constant(7.0f) + kernel.random();
std::size_t input_bytes = input.size() * sizeof(float);
std::size_t kernel_bytes = kernel.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_input;
float* d_kernel;
float* d_out;
cudaMalloc((void**)(&d_input), input_bytes);
cudaMalloc((void**)(&d_kernel), kernel_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4, RowMajor> > gpu_input(d_input, 7,9,11,74);
Eigen::TensorMap<Eigen::Tensor<float, 1, RowMajor> > gpu_kernel(d_kernel, 4);
Eigen::TensorMap<Eigen::Tensor<float, 4, RowMajor> > gpu_out(d_out, 7,9,11,71);
Eigen::array<int, 1> dims(3);
gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 7; ++i) {
for (int j = 0; j < 9; ++j) {
for (int k = 0; k < 11; ++k) {
for (int l = 0; l < 71; ++l) {
const float result = out(i,j,k,l);
const float expected = input(i,j,k,l+0) * kernel(0) + input(i,j,k,l+1) * kernel(1) +
input(i,j,k,l+2) * kernel(2) + input(i,j,k,l+3) * kernel(3);
VERIFY_IS_APPROX(result, expected);
}
}
}
}
}
template<int DataLayout>
static void test_cuda_convolution_2d()
{
Tensor<float, 4, DataLayout> input(74,37,11,137);
Tensor<float, 2, DataLayout> kernel(3,4);
Tensor<float, 4, DataLayout> out(74,35,8,137);
input = input.constant(10.0f) + input.random();
kernel = kernel.constant(7.0f) + kernel.random();
std::size_t input_bytes = input.size() * sizeof(float);
std::size_t kernel_bytes = kernel.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_input;
float* d_kernel;
float* d_out;
cudaMalloc((void**)(&d_input), input_bytes);
cudaMalloc((void**)(&d_kernel), kernel_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_input(d_input,74,37,11,137);
Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > gpu_kernel(d_kernel,3,4);
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_out(d_out,74,35,8,137);
Eigen::array<int, 2> dims(1,2);
gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 74; ++i) {
for (int j = 0; j < 35; ++j) {
for (int k = 0; k < 8; ++k) {
for (int l = 0; l < 137; ++l) {
const float result = out(i,j,k,l);
const float expected = input(i,j+0,k+0,l) * kernel(0,0) +
input(i,j+1,k+0,l) * kernel(1,0) +
input(i,j+2,k+0,l) * kernel(2,0) +
input(i,j+0,k+1,l) * kernel(0,1) +
input(i,j+1,k+1,l) * kernel(1,1) +
input(i,j+2,k+1,l) * kernel(2,1) +
input(i,j+0,k+2,l) * kernel(0,2) +
input(i,j+1,k+2,l) * kernel(1,2) +
input(i,j+2,k+2,l) * kernel(2,2) +
input(i,j+0,k+3,l) * kernel(0,3) +
input(i,j+1,k+3,l) * kernel(1,3) +
input(i,j+2,k+3,l) * kernel(2,3);
VERIFY_IS_APPROX(result, expected);
}
}
}
}
}
template<int DataLayout>
static void test_cuda_convolution_3d()
{
Tensor<float, 5, DataLayout> input(Eigen::array<int, 5>(74,37,11,137,17));
Tensor<float, 3, DataLayout> kernel(3,4,2);
Tensor<float, 5, DataLayout> out(Eigen::array<int, 5>(74,35,8,136,17));
input = input.constant(10.0f) + input.random();
kernel = kernel.constant(7.0f) + kernel.random();
std::size_t input_bytes = input.size() * sizeof(float);
std::size_t kernel_bytes = kernel.size() * sizeof(float);
std::size_t out_bytes = out.size() * sizeof(float);
float* d_input;
float* d_kernel;
float* d_out;
cudaMalloc((void**)(&d_input), input_bytes);
cudaMalloc((void**)(&d_kernel), kernel_bytes);
cudaMalloc((void**)(&d_out), out_bytes);
cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_input(d_input,74,37,11,137,17);
Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout> > gpu_kernel(d_kernel,3,4,2);
Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_out(d_out,74,35,8,136,17);
Eigen::array<int, 3> dims(1,2,3);
gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims);
assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 74; ++i) {
for (int j = 0; j < 35; ++j) {
for (int k = 0; k < 8; ++k) {
for (int l = 0; l < 136; ++l) {
for (int m = 0; m < 17; ++m) {
const float result = out(i,j,k,l,m);
const float expected = input(i,j+0,k+0,l+0,m) * kernel(0,0,0) +
input(i,j+1,k+0,l+0,m) * kernel(1,0,0) +
input(i,j+2,k+0,l+0,m) * kernel(2,0,0) +
input(i,j+0,k+1,l+0,m) * kernel(0,1,0) +
input(i,j+1,k+1,l+0,m) * kernel(1,1,0) +
input(i,j+2,k+1,l+0,m) * kernel(2,1,0) +
input(i,j+0,k+2,l+0,m) * kernel(0,2,0) +
input(i,j+1,k+2,l+0,m) * kernel(1,2,0) +
input(i,j+2,k+2,l+0,m) * kernel(2,2,0) +
input(i,j+0,k+3,l+0,m) * kernel(0,3,0) +
input(i,j+1,k+3,l+0,m) * kernel(1,3,0) +
input(i,j+2,k+3,l+0,m) * kernel(2,3,0) +
input(i,j+0,k+0,l+1,m) * kernel(0,0,1) +
input(i,j+1,k+0,l+1,m) * kernel(1,0,1) +
input(i,j+2,k+0,l+1,m) * kernel(2,0,1) +
input(i,j+0,k+1,l+1,m) * kernel(0,1,1) +
input(i,j+1,k+1,l+1,m) * kernel(1,1,1) +
input(i,j+2,k+1,l+1,m) * kernel(2,1,1) +
input(i,j+0,k+2,l+1,m) * kernel(0,2,1) +
input(i,j+1,k+2,l+1,m) * kernel(1,2,1) +
input(i,j+2,k+2,l+1,m) * kernel(2,2,1) +
input(i,j+0,k+3,l+1,m) * kernel(0,3,1) +
input(i,j+1,k+3,l+1,m) * kernel(1,3,1) +
input(i,j+2,k+3,l+1,m) * kernel(2,3,1);
VERIFY_IS_APPROX(result, expected);
}
}
}
}
}
}
template <typename Scalar>
void test_cuda_lgamma(const Scalar stddev)
{
Tensor<Scalar, 2> in(72,97);
in.setRandom();
in *= in.constant(stddev);
Tensor<Scalar, 2> out(72,97);
out.setZero();
std::size_t bytes = in.size() * sizeof(Scalar);
Scalar* d_in;
Scalar* d_out;
cudaMalloc((void**)(&d_in), bytes);
cudaMalloc((void**)(&d_out), bytes);
cudaMemcpy(d_in, in.data(), bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_in(d_in, 72, 97);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 72, 97);
gpu_out.device(gpu_device) = gpu_in.lgamma();
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 72; ++i) {
for (int j = 0; j < 97; ++j) {
VERIFY_IS_APPROX(out(i,j), (std::lgamma)(in(i,j)));
}
}
}
template <typename Scalar>
void test_cuda_erf(const Scalar stddev)
{
Tensor<Scalar, 2> in(72,97);
in.setRandom();
in *= in.constant(stddev);
Tensor<Scalar, 2> out(72,97);
out.setZero();
std::size_t bytes = in.size() * sizeof(Scalar);
Scalar* d_in;
Scalar* d_out;
cudaMalloc((void**)(&d_in), bytes);
cudaMalloc((void**)(&d_out), bytes);
cudaMemcpy(d_in, in.data(), bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_in(d_in, 72, 97);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 72, 97);
gpu_out.device(gpu_device) = gpu_in.erf();
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 72; ++i) {
for (int j = 0; j < 97; ++j) {
VERIFY_IS_APPROX(out(i,j), (std::erf)(in(i,j)));
}
}
}
template <typename Scalar>
void test_cuda_erfc(const Scalar stddev)
{
Tensor<Scalar, 2> in(72,97);
in.setRandom();
in *= in.constant(stddev);
Tensor<Scalar, 2> out(72,97);
out.setZero();
std::size_t bytes = in.size() * sizeof(Scalar);
Scalar* d_in;
Scalar* d_out;
cudaMalloc((void**)(&d_in), bytes);
cudaMalloc((void**)(&d_out), bytes);
cudaMemcpy(d_in, in.data(), bytes, cudaMemcpyHostToDevice);
Eigen::CudaStreamDevice stream;
Eigen::GpuDevice gpu_device(&stream);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_in(d_in, 72, 97);
Eigen::TensorMap<Eigen::Tensor<Scalar, 2> > gpu_out(d_out, 72, 97);
gpu_out.device(gpu_device) = gpu_in.erfc();
assert(cudaMemcpyAsync(out.data(), d_out, bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
for (int i = 0; i < 72; ++i) {
for (int j = 0; j < 97; ++j) {
VERIFY_IS_APPROX(out(i,j), (std::erfc)(in(i,j)));
}
}
}
void test_cxx11_tensor_cuda()
{
CALL_SUBTEST(test_cuda_elementwise_small());
CALL_SUBTEST(test_cuda_elementwise());
CALL_SUBTEST(test_cuda_reduction());
CALL_SUBTEST(test_cuda_contraction<ColMajor>());
CALL_SUBTEST(test_cuda_contraction<RowMajor>());
CALL_SUBTEST(test_cuda_convolution_1d<ColMajor>());
CALL_SUBTEST(test_cuda_convolution_1d<RowMajor>());
CALL_SUBTEST(test_cuda_convolution_inner_dim_col_major_1d());
CALL_SUBTEST(test_cuda_convolution_inner_dim_row_major_1d());
CALL_SUBTEST(test_cuda_convolution_2d<ColMajor>());
CALL_SUBTEST(test_cuda_convolution_2d<RowMajor>());
CALL_SUBTEST(test_cuda_convolution_3d<ColMajor>());
CALL_SUBTEST(test_cuda_convolution_3d<RowMajor>());
CALL_SUBTEST(test_cuda_lgamma<float>(1.0f));
CALL_SUBTEST(test_cuda_lgamma<float>(100.0f));
CALL_SUBTEST(test_cuda_lgamma<float>(0.01f));
CALL_SUBTEST(test_cuda_lgamma<float>(0.001f));
CALL_SUBTEST(test_cuda_erf<float>(1.0f));
CALL_SUBTEST(test_cuda_erf<float>(100.0f));
CALL_SUBTEST(test_cuda_erf<float>(0.01f));
CALL_SUBTEST(test_cuda_erf<float>(0.001f));
CALL_SUBTEST(test_cuda_erfc<float>(1.0f));
// CALL_SUBTEST(test_cuda_erfc<float>(100.0f));
CALL_SUBTEST(test_cuda_erfc<float>(5.0f)); // CUDA erfc lacks precision for large inputs
CALL_SUBTEST(test_cuda_erfc<float>(0.01f));
CALL_SUBTEST(test_cuda_erfc<float>(0.001f));
CALL_SUBTEST(test_cuda_lgamma<double>(1.0));
CALL_SUBTEST(test_cuda_lgamma<double>(100.0));
CALL_SUBTEST(test_cuda_lgamma<double>(0.01));
CALL_SUBTEST(test_cuda_lgamma<double>(0.001));
CALL_SUBTEST(test_cuda_erf<double>(1.0));
CALL_SUBTEST(test_cuda_erf<double>(100.0));
CALL_SUBTEST(test_cuda_erf<double>(0.01));
CALL_SUBTEST(test_cuda_erf<double>(0.001));
CALL_SUBTEST(test_cuda_erfc<double>(1.0));
// CALL_SUBTEST(test_cuda_erfc<double>(100.0));
CALL_SUBTEST(test_cuda_erfc<double>(5.0)); // CUDA erfc lacks precision for large inputs
CALL_SUBTEST(test_cuda_erfc<double>(0.01));
CALL_SUBTEST(test_cuda_erfc<double>(0.001));
}