mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-06 14:14:46 +08:00
124 lines
5.8 KiB
C++
124 lines
5.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
#include <Eigen/Array>
|
|
|
|
template<typename MatrixType> void product_extra(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::FloatingPoint FloatingPoint;
|
|
typedef Matrix<Scalar, 1, Dynamic> RowVectorType;
|
|
typedef Matrix<Scalar, Dynamic, 1> ColVectorType;
|
|
typedef Matrix<Scalar, Dynamic, Dynamic,
|
|
MatrixType::Flags&RowMajorBit> OtherMajorMatrixType;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m2 = MatrixType::Random(rows, cols),
|
|
m3(rows, cols),
|
|
mzero = MatrixType::Zero(rows, cols),
|
|
identity = MatrixType::Identity(rows, rows),
|
|
square = MatrixType::Random(rows, rows),
|
|
res = MatrixType::Random(rows, rows),
|
|
square2 = MatrixType::Random(cols, cols),
|
|
res2 = MatrixType::Random(cols, cols);
|
|
RowVectorType v1 = RowVectorType::Random(rows), vrres(rows);
|
|
ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
|
|
OtherMajorMatrixType tm1 = m1;
|
|
|
|
Scalar s1 = ei_random<Scalar>(),
|
|
s2 = ei_random<Scalar>(),
|
|
s3 = ei_random<Scalar>();
|
|
|
|
// int c0 = ei_random<int>(0,cols/2-1),
|
|
// c1 = ei_random<int>(cols/2,cols),
|
|
// r0 = ei_random<int>(0,rows/2-1),
|
|
// r1 = ei_random<int>(rows/2,rows);
|
|
|
|
// all the expressions in this test should be compiled as a single matrix product
|
|
// TODO: add internal checks to verify that
|
|
|
|
VERIFY_IS_APPROX(m3 = (m1 * m2.adjoint()).lazy(), m1 * m2.adjoint().eval());
|
|
VERIFY_IS_APPROX(m3 = (m1.adjoint() * square.adjoint()).lazy(), m1.adjoint().eval() * square.adjoint().eval());
|
|
VERIFY_IS_APPROX(m3 = (m1.adjoint() * m2).lazy(), m1.adjoint().eval() * m2);
|
|
VERIFY_IS_APPROX(m3 = ((s1 * m1.adjoint()) * m2).lazy(), (s1 * m1.adjoint()).eval() * m2);
|
|
VERIFY_IS_APPROX(m3 = ((- m1.adjoint() * s1) * (s3 * m2)).lazy(), (- m1.adjoint() * s1).eval() * (s3 * m2).eval());
|
|
VERIFY_IS_APPROX(m3 = ((s2 * m1.adjoint() * s1) * m2).lazy(), (s2 * m1.adjoint() * s1).eval() * m2);
|
|
VERIFY_IS_APPROX(m3 = ((-m1*s2) * s1*m2.adjoint()).lazy(), (-m1*s2).eval() * (s1*m2.adjoint()).eval());
|
|
|
|
// a very tricky case where a scale factor has to be automatically conjugated:
|
|
VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval());
|
|
|
|
|
|
// test all possible conjugate combinations for the four matrix-vector product cases:
|
|
|
|
// std::cerr << "a\n";
|
|
VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2),
|
|
(-m1.conjugate()*s2).eval() * (s1 * vc2).eval());
|
|
VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()),
|
|
(-m1*s2).eval() * (s1 * vc2.conjugate()).eval());
|
|
VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()),
|
|
(-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval());
|
|
|
|
// std::cerr << "b\n";
|
|
VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2),
|
|
(s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval());
|
|
VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2),
|
|
(s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval());
|
|
VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2),
|
|
(s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval());
|
|
|
|
// std::cerr << "c\n";
|
|
VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()),
|
|
(-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval());
|
|
VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()),
|
|
(-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval());
|
|
VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
|
|
(-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
|
|
|
|
// std::cerr << "d\n";
|
|
VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2),
|
|
(s1 * v1).eval() * (-m1.conjugate()*s2).eval());
|
|
VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2),
|
|
(s1 * v1.conjugate()).eval() * (-m1*s2).eval());
|
|
VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2),
|
|
(s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval());
|
|
|
|
VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
|
|
(-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
|
|
|
|
}
|
|
|
|
void test_product_extra()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST( product_extra(MatrixXf(ei_random<int>(1,320), ei_random<int>(1,320))) );
|
|
CALL_SUBTEST( product_extra(MatrixXcf(ei_random<int>(50,50), ei_random<int>(50,50))) );
|
|
CALL_SUBTEST( product_extra(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(ei_random<int>(1,50), ei_random<int>(1,50))) );
|
|
}
|
|
}
|