mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
de014efdaf
* add an efficient selfadjoint * vector implementation (= blas symv) perf are inbetween MKL and GOTO => the interface is still missing (have to be rethougth)
71 lines
2.8 KiB
C++
71 lines
2.8 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@gmail.com>
|
|
//
|
|
// Eigen is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3 of the License, or (at your option) any later version.
|
|
//
|
|
// Alternatively, you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of
|
|
// the License, or (at your option) any later version.
|
|
//
|
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License and a copy of the GNU General Public License along with
|
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#include "main.h"
|
|
|
|
template<typename MatrixType> void product_selfadjoint(const MatrixType& m)
|
|
{
|
|
typedef typename MatrixType::Scalar Scalar;
|
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
|
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
|
|
|
int rows = m.rows();
|
|
int cols = m.cols();
|
|
|
|
MatrixType m1 = MatrixType::Random(rows, cols),
|
|
m2 = MatrixType::Random(rows, cols);
|
|
VectorType v1 = VectorType::Random(rows),
|
|
v2 = VectorType::Random(rows);
|
|
|
|
m1 = m1.adjoint()*m1;
|
|
|
|
// col-lower
|
|
m2.setZero();
|
|
m2.template part<LowerTriangular>() = m1;
|
|
ei_product_selfadjoint_vector<Scalar,MatrixType::Flags&RowMajorBit,LowerTriangularBit>
|
|
(cols,m2.data(),cols, v1.data(), v2.data());
|
|
VERIFY_IS_APPROX(v2, m1 * v1);
|
|
|
|
// col-upper
|
|
m2.setZero();
|
|
m2.template part<UpperTriangular>() = m1;
|
|
ei_product_selfadjoint_vector<Scalar,MatrixType::Flags&RowMajorBit,UpperTriangularBit>(cols,m2.data(),cols, v1.data(), v2.data());
|
|
VERIFY_IS_APPROX(v2, m1 * v1);
|
|
|
|
}
|
|
|
|
void test_product_selfadjoint()
|
|
{
|
|
for(int i = 0; i < g_repeat ; i++) {
|
|
CALL_SUBTEST( product_selfadjoint(Matrix<float, 1, 1>()) );
|
|
CALL_SUBTEST( product_selfadjoint(Matrix<float, 2, 2>()) );
|
|
CALL_SUBTEST( product_selfadjoint(Matrix3d()) );
|
|
CALL_SUBTEST( product_selfadjoint(MatrixXcf(4, 4)) );
|
|
CALL_SUBTEST( product_selfadjoint(MatrixXcd(21,21)) );
|
|
CALL_SUBTEST( product_selfadjoint(MatrixXd(17,17)) );
|
|
CALL_SUBTEST( product_selfadjoint(Matrix<float,Dynamic,Dynamic,RowMajor>(18,18)) );
|
|
CALL_SUBTEST( product_selfadjoint(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(19, 19)) );
|
|
}
|
|
}
|