eigen/blas/common.h

158 lines
4.0 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_BLAS_COMMON_H
#define EIGEN_BLAS_COMMON_H
#include <iostream>
#include <complex>
#ifndef SCALAR
#error the token SCALAR must be defined to compile this file
#endif
#ifdef __cplusplus
extern "C"
{
#endif
#include "blas.h"
#ifdef __cplusplus
}
#endif
#define NOTR 0
#define TR 1
#define ADJ 2
#define LEFT 0
#define RIGHT 1
#define UP 0
#define LO 1
#define NUNIT 0
#define UNIT 1
#define INVALID 0xff
#define OP(X) ( ((X)=='N' || (X)=='n') ? NOTR \
: ((X)=='T' || (X)=='t') ? TR \
: ((X)=='C' || (X)=='c') ? ADJ \
: INVALID)
#define SIDE(X) ( ((X)=='L' || (X)=='l') ? LEFT \
: ((X)=='R' || (X)=='r') ? RIGHT \
: INVALID)
#define UPLO(X) ( ((X)=='U' || (X)=='u') ? UP \
: ((X)=='L' || (X)=='l') ? LO \
: INVALID)
#define DIAG(X) ( ((X)=='N' || (X)=='N') ? NUNIT \
: ((X)=='U' || (X)=='u') ? UNIT \
: INVALID)
inline bool check_op(const char* op)
{
return OP(*op)!=0xff;
}
inline bool check_side(const char* side)
{
return SIDE(*side)!=0xff;
}
inline bool check_uplo(const char* uplo)
{
return UPLO(*uplo)!=0xff;
}
#include <Eigen/Core>
#include <Eigen/Jacobi>
using namespace Eigen;
typedef SCALAR Scalar;
typedef NumTraits<Scalar>::Real RealScalar;
typedef std::complex<RealScalar> Complex;
enum
{
IsComplex = Eigen::NumTraits<SCALAR>::IsComplex,
Conj = IsComplex
};
typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> PlainMatrixType;
typedef Map<Matrix<Scalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > MatrixType;
typedef Map<Matrix<Scalar,Dynamic,1>, 0, InnerStride<Dynamic> > StridedVectorType;
typedef Map<Matrix<Scalar,Dynamic,1> > CompactVectorType;
template<typename T>
Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >
matrix(T* data, int rows, int cols, int stride)
{
return Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >(data, rows, cols, OuterStride<>(stride));
}
template<typename T>
Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> > vector(T* data, int size, int incr)
{
return Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> >(data, size, InnerStride<Dynamic>(incr));
}
template<typename T>
Map<Matrix<T,Dynamic,1> > vector(T* data, int size)
{
return Map<Matrix<T,Dynamic,1> >(data, size);
}
template<typename T>
T* get_compact_vector(T* x, int n, int incx)
{
if(incx==1)
return x;
T* ret = new Scalar[n];
if(incx<0) vector(ret,n) = vector(x,n,-incx).reverse();
else vector(ret,n) = vector(x,n, incx);
return ret;
}
template<typename T>
T* copy_back(T* x_cpy, T* x, int n, int incx)
{
if(x_cpy==x)
return 0;
if(incx<0) vector(x,n,-incx).reverse() = vector(x_cpy,n);
else vector(x,n, incx) = vector(x_cpy,n);
return x_cpy;
}
#define EIGEN_BLAS_FUNC(X) EIGEN_CAT(SCALAR_SUFFIX,X##_)
#endif // EIGEN_BLAS_COMMON_H