mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-21 07:19:46 +08:00
f124f07965
Also, a few minor fixes for GPU tests running in HIP mode. 1. Adding an include for hip/hip_runtime.h in the Macros.h file For HIP __host__ and __device__ are macros which are defined in hip headers. Their definitions need to be included before their use in the file. 2. Fixing the compile failure in TensorContractionGpu introduced by the commit to "Fuse computations into the Tensor contractions using output kernel" 3. Fixing a HIP/clang specific compile error by making the struct-member assignment explicit
254 lines
8.7 KiB
Plaintext
254 lines
8.7 KiB
Plaintext
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
|
|
#define EIGEN_TEST_NO_LONGDOUBLE
|
|
|
|
#define EIGEN_USE_GPU
|
|
|
|
#include "main.h"
|
|
#include <unsupported/Eigen/CXX11/Tensor>
|
|
|
|
#include <unsupported/Eigen/CXX11/src/Tensor/TensorGpuHipCudaDefines.h>
|
|
|
|
using Eigen::Tensor;
|
|
|
|
template <int Layout>
|
|
void test_gpu_simple_argmax()
|
|
{
|
|
Tensor<double, 3, Layout> in(Eigen::array<DenseIndex, 3>(72,53,97));
|
|
Tensor<DenseIndex, 1, Layout> out_max(Eigen::array<DenseIndex, 1>(1));
|
|
Tensor<DenseIndex, 1, Layout> out_min(Eigen::array<DenseIndex, 1>(1));
|
|
in.setRandom();
|
|
in *= in.constant(100.0);
|
|
in(0, 0, 0) = -1000.0;
|
|
in(71, 52, 96) = 1000.0;
|
|
|
|
std::size_t in_bytes = in.size() * sizeof(double);
|
|
std::size_t out_bytes = out_max.size() * sizeof(DenseIndex);
|
|
|
|
double* d_in;
|
|
DenseIndex* d_out_max;
|
|
DenseIndex* d_out_min;
|
|
gpuMalloc((void**)(&d_in), in_bytes);
|
|
gpuMalloc((void**)(&d_out_max), out_bytes);
|
|
gpuMalloc((void**)(&d_out_min), out_bytes);
|
|
|
|
gpuMemcpy(d_in, in.data(), in_bytes, gpuMemcpyHostToDevice);
|
|
|
|
Eigen::GpuStreamDevice stream;
|
|
Eigen::GpuDevice gpu_device(&stream);
|
|
|
|
Eigen::TensorMap<Eigen::Tensor<double, 3, Layout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 3>(72,53,97));
|
|
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_max(d_out_max, Eigen::array<DenseIndex, 1>(1));
|
|
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_min(d_out_min, Eigen::array<DenseIndex, 1>(1));
|
|
|
|
gpu_out_max.device(gpu_device) = gpu_in.argmax();
|
|
gpu_out_min.device(gpu_device) = gpu_in.argmin();
|
|
|
|
assert(gpuMemcpyAsync(out_max.data(), d_out_max, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
|
|
assert(gpuMemcpyAsync(out_min.data(), d_out_min, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
|
|
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
|
|
|
|
VERIFY_IS_EQUAL(out_max(Eigen::array<DenseIndex, 1>(0)), 72*53*97 - 1);
|
|
VERIFY_IS_EQUAL(out_min(Eigen::array<DenseIndex, 1>(0)), 0);
|
|
|
|
gpuFree(d_in);
|
|
gpuFree(d_out_max);
|
|
gpuFree(d_out_min);
|
|
}
|
|
|
|
template <int DataLayout>
|
|
void test_gpu_argmax_dim()
|
|
{
|
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
|
std::vector<int> dims;
|
|
dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7);
|
|
|
|
for (int dim = 0; dim < 4; ++dim) {
|
|
tensor.setRandom();
|
|
tensor = (tensor + tensor.constant(0.5)).log();
|
|
|
|
array<DenseIndex, 3> out_shape;
|
|
for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1];
|
|
|
|
Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape);
|
|
|
|
array<DenseIndex, 4> ix;
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
for (int k = 0; k < 5; ++k) {
|
|
for (int l = 0; l < 7; ++l) {
|
|
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
|
if (ix[dim] != 0) continue;
|
|
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
|
|
tensor(ix) = 10.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::size_t in_bytes = tensor.size() * sizeof(float);
|
|
std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
|
|
|
|
float* d_in;
|
|
DenseIndex* d_out;
|
|
gpuMalloc((void**)(&d_in), in_bytes);
|
|
gpuMalloc((void**)(&d_out), out_bytes);
|
|
|
|
gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice);
|
|
|
|
Eigen::GpuStreamDevice stream;
|
|
Eigen::GpuDevice gpu_device(&stream);
|
|
|
|
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7));
|
|
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape);
|
|
|
|
gpu_out.device(gpu_device) = gpu_in.argmax(dim);
|
|
|
|
assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
|
|
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
|
|
|
|
VERIFY_IS_EQUAL(tensor_arg.size(),
|
|
size_t(2*3*5*7 / tensor.dimension(dim)));
|
|
|
|
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
|
|
// Expect max to be in the first index of the reduced dimension
|
|
VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
|
|
}
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
for (int k = 0; k < 5; ++k) {
|
|
for (int l = 0; l < 7; ++l) {
|
|
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
|
if (ix[dim] != tensor.dimension(dim) - 1) continue;
|
|
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
|
|
tensor(ix) = 20.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice);
|
|
|
|
gpu_out.device(gpu_device) = gpu_in.argmax(dim);
|
|
|
|
assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
|
|
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
|
|
|
|
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
|
|
// Expect max to be in the last index of the reduced dimension
|
|
VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
|
|
}
|
|
|
|
gpuFree(d_in);
|
|
gpuFree(d_out);
|
|
}
|
|
}
|
|
|
|
template <int DataLayout>
|
|
void test_gpu_argmin_dim()
|
|
{
|
|
Tensor<float, 4, DataLayout> tensor(2,3,5,7);
|
|
std::vector<int> dims;
|
|
dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7);
|
|
|
|
for (int dim = 0; dim < 4; ++dim) {
|
|
tensor.setRandom();
|
|
tensor = (tensor + tensor.constant(0.5)).log();
|
|
|
|
array<DenseIndex, 3> out_shape;
|
|
for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1];
|
|
|
|
Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape);
|
|
|
|
array<DenseIndex, 4> ix;
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
for (int k = 0; k < 5; ++k) {
|
|
for (int l = 0; l < 7; ++l) {
|
|
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
|
if (ix[dim] != 0) continue;
|
|
// suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
|
|
tensor(ix) = -10.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::size_t in_bytes = tensor.size() * sizeof(float);
|
|
std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
|
|
|
|
float* d_in;
|
|
DenseIndex* d_out;
|
|
gpuMalloc((void**)(&d_in), in_bytes);
|
|
gpuMalloc((void**)(&d_out), out_bytes);
|
|
|
|
gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice);
|
|
|
|
Eigen::GpuStreamDevice stream;
|
|
Eigen::GpuDevice gpu_device(&stream);
|
|
|
|
Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7));
|
|
Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape);
|
|
|
|
gpu_out.device(gpu_device) = gpu_in.argmin(dim);
|
|
|
|
assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
|
|
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
|
|
|
|
VERIFY_IS_EQUAL(tensor_arg.size(),
|
|
2*3*5*7 / tensor.dimension(dim));
|
|
|
|
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
|
|
// Expect min to be in the first index of the reduced dimension
|
|
VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
|
|
}
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
for (int j = 0; j < 3; ++j) {
|
|
for (int k = 0; k < 5; ++k) {
|
|
for (int l = 0; l < 7; ++l) {
|
|
ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
|
|
if (ix[dim] != tensor.dimension(dim) - 1) continue;
|
|
// suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
|
|
tensor(ix) = -20.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
gpuMemcpy(d_in, tensor.data(), in_bytes, gpuMemcpyHostToDevice);
|
|
|
|
gpu_out.device(gpu_device) = gpu_in.argmin(dim);
|
|
|
|
assert(gpuMemcpyAsync(tensor_arg.data(), d_out, out_bytes, gpuMemcpyDeviceToHost, gpu_device.stream()) == gpuSuccess);
|
|
assert(gpuStreamSynchronize(gpu_device.stream()) == gpuSuccess);
|
|
|
|
for (DenseIndex n = 0; n < tensor_arg.size(); ++n) {
|
|
// Expect max to be in the last index of the reduced dimension
|
|
VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
|
|
}
|
|
|
|
gpuFree(d_in);
|
|
gpuFree(d_out);
|
|
}
|
|
}
|
|
|
|
EIGEN_DECLARE_TEST(cxx11_tensor_argmax_gpu)
|
|
{
|
|
CALL_SUBTEST_1(test_gpu_simple_argmax<RowMajor>());
|
|
CALL_SUBTEST_1(test_gpu_simple_argmax<ColMajor>());
|
|
CALL_SUBTEST_2(test_gpu_argmax_dim<RowMajor>());
|
|
CALL_SUBTEST_2(test_gpu_argmax_dim<ColMajor>());
|
|
CALL_SUBTEST_3(test_gpu_argmin_dim<RowMajor>());
|
|
CALL_SUBTEST_3(test_gpu_argmin_dim<ColMajor>());
|
|
}
|