mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-01-18 14:34:17 +08:00
298 lines
8.3 KiB
C++
298 lines
8.3 KiB
C++
|
|
//g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out
|
|
//g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out
|
|
// -DNOGMM -DNOMTL -DCSPARSE
|
|
// -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a
|
|
#ifndef SIZE
|
|
#define SIZE 100000
|
|
#endif
|
|
|
|
#ifndef NBPERROW
|
|
#define NBPERROW 24
|
|
#endif
|
|
|
|
#ifndef REPEAT
|
|
#define REPEAT 1
|
|
#endif
|
|
|
|
#ifndef NOGOOGLE
|
|
#define EIGEN_GOOGLEHASH_SUPPORT
|
|
#include <google/sparse_hash_map>
|
|
#endif
|
|
|
|
#include "BenchSparseUtil.h"
|
|
|
|
#define CHECK_MEM
|
|
// #define CHECK_MEM std/**/::cout << "check mem\n"; getchar();
|
|
|
|
#define BENCH(X) \
|
|
timer.reset(); \
|
|
for (int _j=0; _j<NBTRIES; ++_j) { \
|
|
timer.start(); \
|
|
for (int _k=0; _k<REPEAT; ++_k) { \
|
|
X \
|
|
} timer.stop(); }
|
|
|
|
typedef std::vector<Vector2i> Coordinates;
|
|
typedef std::vector<float> Values;
|
|
|
|
EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals);
|
|
EIGEN_DONT_INLINE Scalar* setrand_mtl(const Coordinates& coords, const Values& vals);
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
int rows = SIZE;
|
|
int cols = SIZE;
|
|
bool fullyrand = false;
|
|
//float density = float(NBPERROW)/float(SIZE);
|
|
|
|
BenchTimer timer;
|
|
Coordinates coords;
|
|
Values values;
|
|
if(fullyrand)
|
|
{
|
|
for (int i=0; i<cols*NBPERROW; ++i)
|
|
{
|
|
coords.push_back(Vector2i(ei_random<int>(0,rows-1),ei_random<int>(0,cols-1)));
|
|
values.push_back(ei_random<Scalar>());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int j=0; j<cols; ++j)
|
|
for (int i=0; i<NBPERROW; ++i)
|
|
{
|
|
coords.push_back(Vector2i(ei_random<int>(0,rows-1),j));
|
|
values.push_back(ei_random<Scalar>());
|
|
}
|
|
}
|
|
std::cout << "nnz = " << coords.size() << "\n";
|
|
CHECK_MEM
|
|
|
|
// dense matrices
|
|
#ifdef DENSEMATRIX
|
|
{
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
setrand_eigen_dense(coords,values);
|
|
timer.stop();
|
|
std::cout << "Eigen Dense\t" << timer.value() << "\n";
|
|
}
|
|
#endif
|
|
|
|
// eigen sparse matrices
|
|
if (!fullyrand)
|
|
{
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
setinnerrand_eigen(coords,values);
|
|
timer.stop();
|
|
std::cout << "Eigen fillrand\t" << timer.value() << "\n";
|
|
}
|
|
{
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
setrand_eigen_gnu_hash(coords,values);
|
|
timer.stop();
|
|
std::cout << "Eigen std::map\t" << timer.value() << "\n";
|
|
}
|
|
#ifndef NOGOOGLE
|
|
{
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
setrand_eigen_google_dense(coords,values);
|
|
timer.stop();
|
|
std::cout << "Eigen google dense\t" << timer.value() << "\n";
|
|
}
|
|
{
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
setrand_eigen_google_sparse(coords,values);
|
|
timer.stop();
|
|
std::cout << "Eigen google sparse\t" << timer.value() << "\n";
|
|
}
|
|
#endif
|
|
|
|
#ifndef NOUBLAS
|
|
{
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
setrand_ublas_mapped(coords,values);
|
|
timer.stop();
|
|
std::cout << "ublas mapped\t" << timer.value() << "\n";
|
|
}
|
|
{
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
setrand_ublas_genvec(coords,values);
|
|
timer.stop();
|
|
std::cout << "ublas vecofvec\t" << timer.value() << "\n";
|
|
}
|
|
/*{
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
setrand_ublas_compressed(coords,values);
|
|
timer.stop();
|
|
std::cout << "ublas comp\t" << timer.value() << "\n";
|
|
}
|
|
{
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
setrand_ublas_coord(coords,values);
|
|
timer.stop();
|
|
std::cout << "ublas coord\t" << timer.value() << "\n";
|
|
}*/
|
|
#endif
|
|
|
|
|
|
// MTL4
|
|
#ifndef NOMTL
|
|
{
|
|
timer.reset();
|
|
timer.start();
|
|
for (int k=0; k<REPEAT; ++k)
|
|
setrand_mtl(coords,values);
|
|
timer.stop();
|
|
std::cout << "MTL\t" << timer.value() << "\n";
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals)
|
|
{
|
|
using namespace Eigen;
|
|
SparseMatrix<Scalar> mat(SIZE,SIZE);
|
|
mat.startFill(2000000/*coords.size()*/);
|
|
for (int i=0; i<coords.size(); ++i)
|
|
{
|
|
mat.fillrand(coords[i].x(), coords[i].y()) = vals[i];
|
|
}
|
|
mat.endFill();
|
|
CHECK_MEM;
|
|
return 0;
|
|
}
|
|
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals)
|
|
{
|
|
using namespace Eigen;
|
|
SparseMatrix<Scalar> mat(SIZE,SIZE);
|
|
{
|
|
RandomSetter<SparseMatrix<Scalar>, StdMapTraits > setter(mat);
|
|
for (int i=0; i<coords.size(); ++i)
|
|
{
|
|
setter(coords[i].x(), coords[i].y()) = vals[i];
|
|
}
|
|
CHECK_MEM;
|
|
}
|
|
return 0;//&mat.coeffRef(coords[0].x(), coords[0].y());
|
|
}
|
|
|
|
#ifndef NOGOOGLE
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals)
|
|
{
|
|
using namespace Eigen;
|
|
SparseMatrix<Scalar> mat(SIZE,SIZE);
|
|
{
|
|
RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> setter(mat);
|
|
for (int i=0; i<coords.size(); ++i)
|
|
setter(coords[i].x(), coords[i].y()) = vals[i];
|
|
CHECK_MEM;
|
|
}
|
|
return 0;//&mat.coeffRef(coords[0].x(), coords[0].y());
|
|
}
|
|
|
|
EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals)
|
|
{
|
|
using namespace Eigen;
|
|
SparseMatrix<Scalar> mat(SIZE,SIZE);
|
|
{
|
|
RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> setter(mat);
|
|
for (int i=0; i<coords.size(); ++i)
|
|
setter(coords[i].x(), coords[i].y()) = vals[i];
|
|
CHECK_MEM;
|
|
}
|
|
return 0;//&mat.coeffRef(coords[0].x(), coords[0].y());
|
|
}
|
|
#endif
|
|
|
|
#ifndef NOUBLAS
|
|
EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals)
|
|
{
|
|
using namespace boost;
|
|
using namespace boost::numeric;
|
|
using namespace boost::numeric::ublas;
|
|
mapped_matrix<Scalar> aux(SIZE,SIZE);
|
|
for (int i=0; i<coords.size(); ++i)
|
|
{
|
|
aux(coords[i].x(), coords[i].y()) = vals[i];
|
|
}
|
|
CHECK_MEM;
|
|
compressed_matrix<Scalar> mat(aux);
|
|
return 0;// &mat(coords[0].x(), coords[0].y());
|
|
}
|
|
/*EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals)
|
|
{
|
|
using namespace boost;
|
|
using namespace boost::numeric;
|
|
using namespace boost::numeric::ublas;
|
|
coordinate_matrix<Scalar> aux(SIZE,SIZE);
|
|
for (int i=0; i<coords.size(); ++i)
|
|
{
|
|
aux(coords[i].x(), coords[i].y()) = vals[i];
|
|
}
|
|
compressed_matrix<Scalar> mat(aux);
|
|
return 0;//&mat(coords[0].x(), coords[0].y());
|
|
}
|
|
EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals)
|
|
{
|
|
using namespace boost;
|
|
using namespace boost::numeric;
|
|
using namespace boost::numeric::ublas;
|
|
compressed_matrix<Scalar> mat(SIZE,SIZE);
|
|
for (int i=0; i<coords.size(); ++i)
|
|
{
|
|
mat(coords[i].x(), coords[i].y()) = vals[i];
|
|
}
|
|
return 0;//&mat(coords[0].x(), coords[0].y());
|
|
}*/
|
|
EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals)
|
|
{
|
|
using namespace boost;
|
|
using namespace boost::numeric;
|
|
using namespace boost::numeric::ublas;
|
|
|
|
// ublas::vector<coordinate_vector<Scalar> > foo;
|
|
generalized_vector_of_vector<Scalar, row_major, ublas::vector<coordinate_vector<Scalar> > > aux(SIZE,SIZE);
|
|
for (int i=0; i<coords.size(); ++i)
|
|
{
|
|
aux(coords[i].x(), coords[i].y()) = vals[i];
|
|
}
|
|
CHECK_MEM;
|
|
compressed_matrix<Scalar,row_major> mat(aux);
|
|
return 0;//&mat(coords[0].x(), coords[0].y());
|
|
}
|
|
#endif
|
|
|
|
#ifndef NOMTL
|
|
EIGEN_DONT_INLINE void setrand_mtl(const Coordinates& coords, const Values& vals);
|
|
#endif
|
|
|