eigen/test/svd_common.h

563 lines
21 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef SVD_DEFAULT
#error a macro SVD_DEFAULT(MatrixType) must be defined prior to including svd_common.h
#endif
#ifndef SVD_FOR_MIN_NORM
#error a macro SVD_FOR_MIN_NORM(MatrixType) must be defined prior to including svd_common.h
#endif
#ifndef SVD_STATIC_OPTIONS
#error a macro SVD_STATIC_OPTIONS(MatrixType, Options) must be defined prior to including svd_common.h
#endif
#include "svd_fill.h"
#include "solverbase.h"
// Check that the matrix m is properly reconstructed and that the U and V factors are unitary
// The SVD must have already been computed.
template<typename SvdType, typename MatrixType>
void svd_check_full(const MatrixType& m, const SvdType& svd)
{
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
MatrixType sigma = MatrixType::Zero(rows,cols);
sigma.diagonal() = svd.singularValues().template cast<Scalar>();
MatrixUType u = svd.matrixU();
MatrixVType v = svd.matrixV();
RealScalar scaling = m.cwiseAbs().maxCoeff();
if(scaling<(std::numeric_limits<RealScalar>::min)())
{
VERIFY(sigma.cwiseAbs().maxCoeff() <= (std::numeric_limits<RealScalar>::min)());
}
else
{
VERIFY_IS_APPROX(m/scaling, u * (sigma/scaling) * v.adjoint());
}
VERIFY_IS_UNITARY(u);
VERIFY_IS_UNITARY(v);
}
// Compare partial SVD defined by computationOptions to a full SVD referenceSvd
template<typename MatrixType, typename SvdType, int Options>
void svd_compare_to_full(const MatrixType& m,
const SvdType& referenceSvd)
{
typedef typename MatrixType::RealScalar RealScalar;
Index rows = m.rows();
Index cols = m.cols();
Index diagSize = (std::min)(rows, cols);
RealScalar prec = test_precision<RealScalar>();
SVD_STATIC_OPTIONS(MatrixType, Options) svd(m);
VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
if(Options & (ComputeFullV|ComputeThinV))
{
VERIFY( (svd.matrixV().adjoint()*svd.matrixV()).isIdentity(prec) );
VERIFY_IS_APPROX( svd.matrixV().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint(),
referenceSvd.matrixV().leftCols(diagSize) * referenceSvd.singularValues().asDiagonal() * referenceSvd.matrixV().leftCols(diagSize).adjoint());
}
if(Options & (ComputeFullU|ComputeThinU))
{
VERIFY( (svd.matrixU().adjoint()*svd.matrixU()).isIdentity(prec) );
VERIFY_IS_APPROX( svd.matrixU().leftCols(diagSize) * svd.singularValues().cwiseAbs2().asDiagonal() * svd.matrixU().leftCols(diagSize).adjoint(),
referenceSvd.matrixU().leftCols(diagSize) * referenceSvd.singularValues().cwiseAbs2().asDiagonal() * referenceSvd.matrixU().leftCols(diagSize).adjoint());
}
// The following checks are not critical.
// For instance, with Dived&Conquer SVD, if only the factor 'V' is computed then different matrix-matrix product implementation will be used
// and the resulting 'V' factor might be significantly different when the SVD decomposition is not unique, especially with single precision float.
++g_test_level;
if(Options & ComputeFullU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
if(Options & ComputeThinU) VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
if(Options & ComputeFullV) VERIFY_IS_APPROX(svd.matrixV().cwiseAbs(), referenceSvd.matrixV().cwiseAbs());
if(Options & ComputeThinV) VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
--g_test_level;
}
template<typename SvdType, typename MatrixType>
void svd_least_square(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
Index rows = m.rows();
Index cols = m.cols();
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
SvdType svd(m);
if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8);
else if(internal::is_same<RealScalar,float>::value) svd.setThreshold(2e-4);
SolutionType x = svd.solve(rhs);
RealScalar residual = (m*x-rhs).norm();
RealScalar rhs_norm = rhs.norm();
if(!test_isMuchSmallerThan(residual,rhs.norm()))
{
// ^^^ If the residual is very small, then we have an exact solution, so we are already good.
// evaluate normal equation which works also for least-squares solutions
if(internal::is_same<RealScalar,double>::value || svd.rank()==m.diagonal().size())
{
using std::sqrt;
// This test is not stable with single precision.
// This is probably because squaring m signicantly affects the precision.
if(internal::is_same<RealScalar,float>::value) ++g_test_level;
VERIFY_IS_APPROX(m.adjoint()*(m*x),m.adjoint()*rhs);
if(internal::is_same<RealScalar,float>::value) --g_test_level;
}
// Check that there is no significantly better solution in the neighborhood of x
for(Index k=0;k<x.rows();++k)
{
using std::abs;
SolutionType y(x);
y.row(k) = (RealScalar(1)+2*NumTraits<RealScalar>::epsilon())*x.row(k);
RealScalar residual_y = (m*y-rhs).norm();
VERIFY( test_isMuchSmallerThan(abs(residual_y-residual), rhs_norm) || residual < residual_y );
if(internal::is_same<RealScalar,float>::value) ++g_test_level;
VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
if(internal::is_same<RealScalar,float>::value) --g_test_level;
y.row(k) = (RealScalar(1)-2*NumTraits<RealScalar>::epsilon())*x.row(k);
residual_y = (m*y-rhs).norm();
VERIFY( test_isMuchSmallerThan(abs(residual_y-residual), rhs_norm) || residual < residual_y );
if(internal::is_same<RealScalar,float>::value) ++g_test_level;
VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
if(internal::is_same<RealScalar,float>::value) --g_test_level;
}
}
}
// check minimal norm solutions, the input matrix m is only used to recover problem size
template<typename MatrixType, int Options>
void svd_min_norm(const MatrixType& m)
{
typedef typename MatrixType::Scalar Scalar;
Index cols = m.cols();
enum {
ColsAtCompileTime = MatrixType::ColsAtCompileTime
};
typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
// generate a full-rank m x n problem with m<n
enum {
RankAtCompileTime2 = ColsAtCompileTime==Dynamic ? Dynamic : (ColsAtCompileTime)/2+1,
RowsAtCompileTime3 = ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime+1
};
typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2;
typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2;
typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T;
Index rank = RankAtCompileTime2==Dynamic ? internal::random<Index>(1,cols) : Index(RankAtCompileTime2);
MatrixType2 m2(rank,cols);
int guard = 0;
do {
m2.setRandom();
} while(SVD_FOR_MIN_NORM(MatrixType2)(m2).setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10);
VERIFY(guard<10);
RhsType2 rhs2 = RhsType2::Random(rank);
// use QR to find a reference minimal norm solution
HouseholderQR<MatrixType2T> qr(m2.adjoint());
Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2);
tmp.conservativeResize(cols);
tmp.tail(cols-rank).setZero();
SolutionType x21 = qr.householderQ() * tmp;
// now check with SVD
SVD_STATIC_OPTIONS(MatrixType2, Options) svd2(m2);
SolutionType x22 = svd2.solve(rhs2);
VERIFY_IS_APPROX(m2*x21, rhs2);
VERIFY_IS_APPROX(m2*x22, rhs2);
VERIFY_IS_APPROX(x21, x22);
// Now check with a rank deficient matrix
typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3;
typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3;
Index rows3 = RowsAtCompileTime3==Dynamic ? internal::random<Index>(rank+1,2*cols) : Index(RowsAtCompileTime3);
Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank);
MatrixType3 m3 = C * m2;
RhsType3 rhs3 = C * rhs2;
SVD_STATIC_OPTIONS(MatrixType3, Options) svd3(m3);
SolutionType x3 = svd3.solve(rhs3);
VERIFY_IS_APPROX(m3*x3, rhs3);
VERIFY_IS_APPROX(m3*x21, rhs3);
VERIFY_IS_APPROX(m2*x3, rhs2);
VERIFY_IS_APPROX(x21, x3);
}
template<typename MatrixType, typename SolverType>
void svd_test_solvers(const MatrixType& m, const SolverType& solver) {
Index rows, cols, cols2;
rows = m.rows();
cols = m.cols();
if(MatrixType::ColsAtCompileTime==Dynamic)
{
cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE);
}
else
{
cols2 = cols;
}
typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> CMatrixType;
check_solverbase<CMatrixType, MatrixType>(m, solver, rows, cols, cols2);
}
// work around stupid msvc error when constructing at compile time an expression that involves
// a division by zero, even if the numeric type has floating point
template<typename Scalar>
EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
// workaround aggressive optimization in ICC
template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
// This function verifies we don't iterate infinitely on nan/inf values,
// and that info() returns InvalidInput.
template<typename MatrixType>
void svd_inf_nan()
{
SVD_STATIC_OPTIONS(MatrixType, ComputeFullU | ComputeFullV) svd;
typedef typename MatrixType::Scalar Scalar;
Scalar some_inf = Scalar(1) / zero<Scalar>();
VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
svd.compute(MatrixType::Constant(10,10,some_inf));
VERIFY(svd.info() == InvalidInput);
Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
VERIFY(nan != nan);
svd.compute(MatrixType::Constant(10,10,nan));
VERIFY(svd.info() == InvalidInput);
MatrixType m = MatrixType::Zero(10,10);
m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
svd.compute(m);
VERIFY(svd.info() == InvalidInput);
m = MatrixType::Zero(10,10);
m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan;
svd.compute(m);
VERIFY(svd.info() == InvalidInput);
// regression test for bug 791
m.resize(3,3);
m << 0, 2*NumTraits<Scalar>::epsilon(), 0.5,
0, -0.5, 0,
nan, 0, 0;
svd.compute(m);
VERIFY(svd.info() == InvalidInput);
m.resize(4,4);
m << 1, 0, 0, 0,
0, 3, 1, 2e-308,
1, 0, 1, nan,
0, nan, nan, 0;
svd.compute(m);
VERIFY(svd.info() == InvalidInput);
}
// Regression test for bug 286: JacobiSVD loops indefinitely with some
// matrices containing denormal numbers.
template<typename>
void svd_underoverflow()
{
#if defined __INTEL_COMPILER
// shut up warning #239: floating point underflow
#pragma warning push
#pragma warning disable 239
#endif
Matrix2d M;
M << -7.90884e-313, -4.94e-324,
0, 5.60844e-313;
SVD_STATIC_OPTIONS(Matrix2d, ComputeFullU | ComputeFullV) svd;
svd.compute(M);
CALL_SUBTEST( svd_check_full(M,svd) );
// Check all 2x2 matrices made with the following coefficients:
VectorXd value_set(9);
value_set << 0, 1, -1, 5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324, -4.94e-223, 4.94e-223;
Array4i id(0,0,0,0);
int k = 0;
do
{
M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
svd.compute(M);
CALL_SUBTEST( svd_check_full(M,svd) );
id(k)++;
if(id(k)>=value_set.size())
{
while(k<3 && id(k)>=value_set.size()) id(++k)++;
id.head(k).setZero();
k=0;
}
} while((id<int(value_set.size())).all());
#if defined __INTEL_COMPILER
#pragma warning pop
#endif
// Check for overflow:
Matrix3d M3;
M3 << 4.4331978442502944e+307, -5.8585363752028680e+307, 6.4527017443412964e+307,
3.7841695601406358e+307, 2.4331702789740617e+306, -3.5235707140272905e+307,
-8.7190887618028355e+307, -7.3453213709232193e+307, -2.4367363684472105e+307;
SVD_STATIC_OPTIONS(Matrix3d, ComputeFullU|ComputeFullV) svd3;
svd3.compute(M3); // just check we don't loop indefinitely
CALL_SUBTEST( svd_check_full(M3,svd3) );
}
template<typename MatrixType>
void svd_all_trivial_2x2( void (*cb)(const MatrixType&) )
{
MatrixType M;
VectorXd value_set(3);
value_set << 0, 1, -1;
Array4i id(0,0,0,0);
int k = 0;
do
{
M << value_set(id(0)), value_set(id(1)), value_set(id(2)), value_set(id(3));
cb(M);
id(k)++;
if(id(k)>=value_set.size())
{
while(k<3 && id(k)>=value_set.size()) id(++k)++;
id.head(k).setZero();
k=0;
}
} while((id<int(value_set.size())).all());
}
template<typename>
void svd_preallocate()
{
Vector3f v(3.f, 2.f, 1.f);
MatrixXf m = v.asDiagonal();
internal::set_is_malloc_allowed(false);
VERIFY_RAISES_ASSERT(VectorXf tmp(10);)
SVD_DEFAULT(MatrixXf) svd;
internal::set_is_malloc_allowed(true);
svd.compute(m);
VERIFY_IS_APPROX(svd.singularValues(), v);
VERIFY_RAISES_ASSERT(svd.matrixU());
VERIFY_RAISES_ASSERT(svd.matrixV());
SVD_STATIC_OPTIONS(MatrixXf, ComputeFullU | ComputeFullV) svd2(3,3);
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
VERIFY_IS_APPROX(svd2.singularValues(), v);
VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
internal::set_is_malloc_allowed(false);
svd2.compute(m);
internal::set_is_malloc_allowed(true);
}
template<typename MatrixType, int QRPreconditioner = 0>
void svd_verify_assert_full_only(const MatrixType& m = MatrixType())
{
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime
};
typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, 1> RhsType;
RhsType rhs = RhsType::Zero(m.rows());
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner) svd0;
VERIFY_RAISES_ASSERT(( svd0.matrixU() ));
VERIFY_RAISES_ASSERT(( svd0.singularValues() ));
VERIFY_RAISES_ASSERT(( svd0.matrixV() ));
VERIFY_RAISES_ASSERT(( svd0.solve(rhs) ));
VERIFY_RAISES_ASSERT(( svd0.transpose().solve(rhs) ));
VERIFY_RAISES_ASSERT(( svd0.adjoint().solve(rhs) ));
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner) svd1(m);
VERIFY_RAISES_ASSERT(( svd1.matrixU() ));
VERIFY_RAISES_ASSERT(( svd1.matrixV() ));
VERIFY_RAISES_ASSERT(( svd1.solve(rhs)));
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU) svdFullU(m);
VERIFY_RAISES_ASSERT(( svdFullU.matrixV() ));
VERIFY_RAISES_ASSERT(( svdFullU.solve(rhs)));
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullV) svdFullV(m);
VERIFY_RAISES_ASSERT(( svdFullV.matrixU() ));
VERIFY_RAISES_ASSERT(( svdFullV.solve(rhs)));
}
template<typename MatrixType, int QRPreconditioner = 0>
void svd_verify_assert(const MatrixType& m = MatrixType())
{
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime
};
typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, 1> RhsType;
RhsType rhs = RhsType::Zero(m.rows());
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU) svdThinU(m);
VERIFY_RAISES_ASSERT(( svdThinU.matrixV() ));
VERIFY_RAISES_ASSERT(( svdThinU.solve(rhs)));
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinV) svdThinV(m);
VERIFY_RAISES_ASSERT(( svdThinV.matrixU() ));
VERIFY_RAISES_ASSERT(( svdThinV.solve(rhs)));
svd_verify_assert_full_only<MatrixType, QRPreconditioner>(m);
}
template<typename MatrixType, int Options>
void svd_compute_checks(const MatrixType& m)
{
typedef SVD_STATIC_OPTIONS(MatrixType, Options) SVDType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
DiagAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime),
MatrixURowsAtCompileTime = SVDType::MatrixUType::RowsAtCompileTime,
MatrixUColsAtCompileTime = SVDType::MatrixUType::ColsAtCompileTime,
MatrixVRowsAtCompileTime = SVDType::MatrixVType::RowsAtCompileTime,
MatrixVColsAtCompileTime = SVDType::MatrixVType::ColsAtCompileTime
};
SVDType staticSvd(m);
VERIFY(MatrixURowsAtCompileTime == RowsAtCompileTime);
VERIFY(MatrixVRowsAtCompileTime == ColsAtCompileTime);
if (Options & ComputeThinU) VERIFY(MatrixUColsAtCompileTime == DiagAtCompileTime);
if (Options & ComputeFullU) VERIFY(MatrixUColsAtCompileTime == RowsAtCompileTime);
if (Options & ComputeThinV) VERIFY(MatrixVColsAtCompileTime == DiagAtCompileTime);
if (Options & ComputeFullV) VERIFY(MatrixVColsAtCompileTime == ColsAtCompileTime);
if (Options & (ComputeThinU|ComputeFullU)) VERIFY(staticSvd.computeU());
else VERIFY(!staticSvd.computeU());
if (Options & (ComputeThinV|ComputeFullV)) VERIFY(staticSvd.computeV());
else VERIFY(!staticSvd.computeV());
if (staticSvd.computeU()) VERIFY(staticSvd.matrixU().isUnitary());
if (staticSvd.computeV()) VERIFY(staticSvd.matrixV().isUnitary());
if (staticSvd.computeU() && staticSvd.computeV())
{
svd_test_solvers(m, staticSvd);
svd_least_square<SVDType, MatrixType>(m);
// svd_min_norm generates non-square matrices so it can't be used with NoQRPreconditioner
if ((Options & internal::QRPreconditionerBits) != NoQRPreconditioner)
svd_min_norm<MatrixType, Options>(m);
}
}
template<typename MatrixType, int QRPreconditioner = 0>
void svd_option_checks(const MatrixType& m)
{
// singular values only
svd_compute_checks<MatrixType, QRPreconditioner>(m);
// Thin only
svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU >(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinV >(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU | ComputeThinV>(m);
// Full only
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU >(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullV >(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV>(m);
// Mixed
svd_compute_checks<MatrixType, QRPreconditioner | ComputeThinU | ComputeFullV>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeThinV>(m);
typedef SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) FullSvdType;
FullSvdType fullSvd(m);
svd_check_full(m, fullSvd);
svd_compare_to_full<MatrixType, FullSvdType, QRPreconditioner | ComputeFullU | ComputeFullV>(m, fullSvd);
}
template<typename MatrixType, int QRPreconditioner = 0>
void svd_option_checks_full_only(const MatrixType& m)
{
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullV>(m);
svd_compute_checks<MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV>(m);
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) fullSvd(m);
svd_check_full(m, fullSvd);
}
template<typename MatrixType, int QRPreconditioner = 0>
void svd_check_max_size_matrix(int initialRows, int initialCols)
{
enum {
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
int rows = MaxRowsAtCompileTime == Dynamic ? initialRows : (std::min)(initialRows, (int)MaxRowsAtCompileTime);
int cols = MaxColsAtCompileTime == Dynamic ? initialCols : (std::min)(initialCols, (int)MaxColsAtCompileTime);
MatrixType m(rows, cols);
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU | ComputeThinV) thinSvd(m);
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeThinU | ComputeFullV) mixedSvd1(m);
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeThinV) mixedSvd2(m);
SVD_STATIC_OPTIONS(MatrixType, QRPreconditioner | ComputeFullU | ComputeFullV) fullSvd(m);
MatrixType n(MaxRowsAtCompileTime, MaxColsAtCompileTime);
thinSvd.compute(n);
mixedSvd1.compute(n);
mixedSvd2.compute(n);
fullSvd.compute(n);
MatrixX<typename MatrixType::Scalar> dynamicMatrix(MaxRowsAtCompileTime + 1, MaxColsAtCompileTime + 1);
VERIFY_RAISES_ASSERT(thinSvd.compute(dynamicMatrix));
VERIFY_RAISES_ASSERT(mixedSvd1.compute(dynamicMatrix));
VERIFY_RAISES_ASSERT(mixedSvd2.compute(dynamicMatrix));
VERIFY_RAISES_ASSERT(fullSvd.compute(dynamicMatrix));
}
#undef SVD_DEFAULT
#undef SVD_FOR_MIN_NORM
#undef SVD_STATIC_OPTIONS