mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-03 06:50:57 +08:00
201 lines
7.0 KiB
C++
201 lines
7.0 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra. Eigen itself is part of the KDE project.
|
|
//
|
|
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#include "sparse.h"
|
|
|
|
template<typename Scalar> void
|
|
initSPD(double density,
|
|
Matrix<Scalar,Dynamic,Dynamic>& refMat,
|
|
SparseMatrix<Scalar>& sparseMat)
|
|
{
|
|
Matrix<Scalar,Dynamic,Dynamic> aux(refMat.rows(),refMat.cols());
|
|
initSparse(density,refMat,sparseMat);
|
|
refMat = refMat * refMat.adjoint();
|
|
for (int k=0; k<2; ++k)
|
|
{
|
|
initSparse(density,aux,sparseMat,ForceNonZeroDiag);
|
|
refMat += aux * aux.adjoint();
|
|
}
|
|
sparseMat.startFill();
|
|
for (int j=0 ; j<sparseMat.cols(); ++j)
|
|
for (int i=j ; i<sparseMat.rows(); ++i)
|
|
if (refMat(i,j)!=Scalar(0))
|
|
sparseMat.fill(i,j) = refMat(i,j);
|
|
sparseMat.endFill();
|
|
}
|
|
|
|
template<typename Scalar> void sparse_solvers(int rows, int cols)
|
|
{
|
|
double density = std::max(8./(rows*cols), 0.01);
|
|
typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
|
|
typedef Matrix<Scalar,Dynamic,1> DenseVector;
|
|
// Scalar eps = 1e-6;
|
|
|
|
DenseVector vec1 = DenseVector::Random(rows);
|
|
|
|
std::vector<Vector2i> zeroCoords;
|
|
std::vector<Vector2i> nonzeroCoords;
|
|
|
|
// test triangular solver
|
|
{
|
|
DenseVector vec2 = vec1, vec3 = vec1;
|
|
SparseMatrix<Scalar> m2(rows, cols);
|
|
DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
|
|
|
|
// lower
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
|
|
VERIFY_IS_APPROX(refMat2.template marked<LowerTriangular>().solveTriangular(vec2),
|
|
m2.template marked<LowerTriangular>().solveTriangular(vec3));
|
|
|
|
// lower - transpose
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
|
|
VERIFY_IS_APPROX(refMat2.template marked<LowerTriangular>().transpose().solveTriangular(vec2),
|
|
m2.template marked<LowerTriangular>().transpose().solveTriangular(vec3));
|
|
|
|
// upper
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords);
|
|
VERIFY_IS_APPROX(refMat2.template marked<UpperTriangular>().solveTriangular(vec2),
|
|
m2.template marked<UpperTriangular>().solveTriangular(vec3));
|
|
|
|
// upper - transpose
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords);
|
|
VERIFY_IS_APPROX(refMat2.template marked<UpperTriangular>().transpose().solveTriangular(vec2),
|
|
m2.template marked<UpperTriangular>().transpose().solveTriangular(vec3));
|
|
}
|
|
|
|
// test LLT
|
|
{
|
|
// TODO fix the issue with complex (see SparseLLT::solveInPlace)
|
|
SparseMatrix<Scalar> m2(rows, cols);
|
|
DenseMatrix refMat2(rows, cols);
|
|
|
|
DenseVector b = DenseVector::Random(cols);
|
|
DenseVector refX(cols), x(cols);
|
|
|
|
initSPD(density, refMat2, m2);
|
|
|
|
refMat2.llt().solve(b, &refX);
|
|
typedef SparseMatrix<Scalar,LowerTriangular|SelfAdjoint> SparseSelfAdjointMatrix;
|
|
if (!NumTraits<Scalar>::IsComplex)
|
|
{
|
|
x = b;
|
|
SparseLLT<SparseSelfAdjointMatrix> (m2).solveInPlace(x);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default");
|
|
}
|
|
#ifdef EIGEN_CHOLMOD_SUPPORT
|
|
x = b;
|
|
SparseLLT<SparseSelfAdjointMatrix,Cholmod>(m2).solveInPlace(x);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod");
|
|
#endif
|
|
if (!NumTraits<Scalar>::IsComplex)
|
|
{
|
|
#ifdef EIGEN_TAUCS_SUPPORT
|
|
x = b;
|
|
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,IncompleteFactorization).solveInPlace(x);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (IncompleteFactorization)");
|
|
x = b;
|
|
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalMultifrontal).solveInPlace(x);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalMultifrontal)");
|
|
x = b;
|
|
SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalLeftLooking).solveInPlace(x);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalLeftLooking)");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// test LDLT
|
|
if (!NumTraits<Scalar>::IsComplex)
|
|
{
|
|
// TODO fix the issue with complex (see SparseLDLT::solveInPlace)
|
|
SparseMatrix<Scalar> m2(rows, cols);
|
|
DenseMatrix refMat2(rows, cols);
|
|
|
|
DenseVector b = DenseVector::Random(cols);
|
|
DenseVector refX(cols), x(cols);
|
|
|
|
//initSPD(density, refMat2, m2);
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0);
|
|
refMat2 += refMat2.adjoint();
|
|
refMat2.diagonal() *= 0.5;
|
|
|
|
refMat2.ldlt().solve(b, &refX);
|
|
typedef SparseMatrix<Scalar,UpperTriangular|SelfAdjoint> SparseSelfAdjointMatrix;
|
|
x = b;
|
|
SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2);
|
|
if (ldlt.succeeded())
|
|
ldlt.solveInPlace(x);
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
|
|
}
|
|
|
|
// test LU
|
|
{
|
|
static int count = 0;
|
|
SparseMatrix<Scalar> m2(rows, cols);
|
|
DenseMatrix refMat2(rows, cols);
|
|
|
|
DenseVector b = DenseVector::Random(cols);
|
|
DenseVector refX(cols), x(cols);
|
|
|
|
initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords);
|
|
|
|
LU<DenseMatrix> refLu(refMat2);
|
|
refLu.solve(b, &refX);
|
|
#if defined(EIGEN_SUPERLU_SUPPORT) || defined(EIGEN_UMFPACK_SUPPORT)
|
|
Scalar refDet = refLu.determinant();
|
|
#endif
|
|
x.setZero();
|
|
// // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x);
|
|
// // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default");
|
|
#ifdef EIGEN_SUPERLU_SUPPORT
|
|
{
|
|
x.setZero();
|
|
SparseLU<SparseMatrix<Scalar>,SuperLU> slu(m2);
|
|
if (slu.succeeded())
|
|
{
|
|
if (slu.solve(b,&x)) {
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU");
|
|
}
|
|
// std::cerr << refDet << " == " << slu.determinant() << "\n";
|
|
if (count==0) {
|
|
VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#ifdef EIGEN_UMFPACK_SUPPORT
|
|
{
|
|
// check solve
|
|
x.setZero();
|
|
SparseLU<SparseMatrix<Scalar>,UmfPack> slu(m2);
|
|
if (slu.succeeded()) {
|
|
if (slu.solve(b,&x)) {
|
|
if (count==0) {
|
|
VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack"); // FIXME solve is not very stable for complex
|
|
}
|
|
}
|
|
VERIFY_IS_APPROX(refDet,slu.determinant());
|
|
// TODO check the extracted data
|
|
//std::cerr << slu.matrixL() << "\n";
|
|
}
|
|
}
|
|
#endif
|
|
count++;
|
|
}
|
|
|
|
}
|
|
|
|
void test_eigen2_sparse_solvers()
|
|
{
|
|
for(int i = 0; i < g_repeat; i++) {
|
|
CALL_SUBTEST_1( sparse_solvers<double>(8, 8) );
|
|
CALL_SUBTEST_2( sparse_solvers<std::complex<double> >(16, 16) );
|
|
CALL_SUBTEST_1( sparse_solvers<double>(101, 101) );
|
|
}
|
|
}
|