eigen/test/adjoint.cpp
Benoit Jacob aebecae510 * find the proper way of nesting the expression in Flagged:
finally that's more subtle than just using ei_nested, because when
  flagging with NestByValueBit we want to store the expression by value
  already, regardless of whether it already had the NestByValueBit set.
* rename temporary() ----> nestByValue()
* move the old Product.h to disabled/, replace by what was ProductWIP.h
* tweak -O and -g flags for tests and examples
* reorder the tests -- basic things go first
* simplifications, e.g. in many methoeds return derived() and count on
  implicit casting to the actual return type.
* strip some not-really-useful stuff from the heaviest tests
2008-05-28 04:38:16 +00:00

101 lines
4.2 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob@math.jussieu.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
template<typename MatrixType> void adjoint(const MatrixType& m)
{
/* this test covers the following files:
Transpose.h Conjugate.h Dot.h
*/
typedef typename MatrixType::Scalar Scalar;
typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
int rows = m.rows();
int cols = m.cols();
MatrixType m1 = MatrixType::random(rows, cols),
m2 = MatrixType::random(rows, cols),
m3(rows, cols),
mzero = MatrixType::zero(rows, cols),
identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
::identity(rows, rows),
square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
::random(rows, rows);
VectorType v1 = VectorType::random(rows),
v2 = VectorType::random(rows),
v3 = VectorType::random(rows),
vzero = VectorType::zero(rows);
Scalar s1 = ei_random<Scalar>(),
s2 = ei_random<Scalar>();
// check basic compatibility of adjoint, transpose, conjugate
VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1);
VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1);
// check multiplicative behavior
std::cout << (m1.adjoint() * m2).adjoint() << std::endl;
std::cout << "------------------------------" << std::endl;
std::cout << m2.adjoint() * m1 << std::endl;
VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1);
VERIFY_IS_APPROX((s1 * m1).adjoint(), ei_conj(s1) * m1.adjoint());
// check basic properties of dot, norm, norm2
typedef typename NumTraits<Scalar>::Real RealScalar;
VERIFY_IS_APPROX((s1 * v1 + s2 * v2).dot(v3), s1 * v1.dot(v3) + s2 * v2.dot(v3));
VERIFY_IS_APPROX(v3.dot(s1 * v1 + s2 * v2), ei_conj(s1)*v3.dot(v1)+ei_conj(s2)*v3.dot(v2));
VERIFY_IS_APPROX(ei_conj(v1.dot(v2)), v2.dot(v1));
VERIFY_IS_APPROX(ei_abs(v1.dot(v1)), v1.norm2());
if(NumTraits<Scalar>::HasFloatingPoint)
VERIFY_IS_APPROX(v1.norm2(), v1.norm() * v1.norm());
VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(vzero.dot(v1)), static_cast<RealScalar>(1));
if(NumTraits<Scalar>::HasFloatingPoint)
VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
// check compatibility of dot and adjoint
VERIFY_IS_APPROX(v1.dot(square * v2), (square.adjoint() * v1).dot(v2));
// like in testBasicStuff, test operator() to check const-qualification
int r = ei_random<int>(0, rows-1),
c = ei_random<int>(0, cols-1);
VERIFY_IS_APPROX(m1.conjugate()(r,c), ei_conj(m1(r,c)));
VERIFY_IS_APPROX(m1.adjoint()(c,r), ei_conj(m1(r,c)));
}
void test_adjoint()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST( adjoint(Matrix<float, 1, 1>()) );
CALL_SUBTEST( adjoint(Matrix4d()) );
CALL_SUBTEST( adjoint(MatrixXcf(3, 3)) );
CALL_SUBTEST( adjoint(MatrixXi(8, 12)) );
CALL_SUBTEST( adjoint(MatrixXcd(20, 20)) );
}
// test a large matrix only once
CALL_SUBTEST( adjoint(Matrix<float, 100, 100>()) );
}